Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nanosecond single-photon timing with InGaAs/InP photodiodes

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate that separate absorption and multiplication InGaAs/InP avalanche photodiodes can work biased above the breakdown voltage and detect the arrival time of single photons with 1-ns resolution and a noise-equivalent power of 1 × 10−14 W/Hz1/2 at 150 K. We investigated the performance of various samples, cooling the detectors from different temperatures down to 50 K. These devices are suitable for the detection of short optical pulses in the near-infrared range up to a 1.55-μm wavelength, for the characterization of optical communication components, and for luminescence and radiative decay measurements.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This
Single-photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors

A. Lacaita, F. Zappa, S. Cova, and P. Lovati
Appl. Opt. 35(16) 2986-2996 (1996)

Counting, timing, and tracking with a single-photon germanium detector

F. Zappa, A. Lacaita, S. Cova, and P. Lovati
Opt. Lett. 21(1) 59-61 (1996)

Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters

Grégoire Ribordy, Jean-Daniel Gautier, Hugo Zbinden, and Nicolas Gisin
Appl. Opt. 37(12) 2272-2277 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.