Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Loss analysis of air-core photonic crystal fibers

Not Accessible

Your library or personal account may give you access

Abstract

By using a multipole moment approach, we analyze the loss of an air-core photonic crystal fiber and demonstrate that it is possible reduce the transmission loss that is due to photon radiation leakage through the photonic crystal cladding to a level below 0.01 dB/km, with eight rings of air holes. An analogy is drawn between air-core photonic crystal fiber modes and Bragg fiber modes. The influence of material absorption in the silica glass is discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Leakage loss and group velocity dispersion in air-core photonic bandgap fibers

Kunimasa Saitoh and Masanori Koshiba
Opt. Express 11(23) 3100-3109 (2003)

Improved large-mode-area endlessly single-mode photonic crystal fibers

N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen
Opt. Lett. 28(6) 393-395 (2003)

Brillouin scattering spectrum in photonic crystal fiber with a partially germanium-doped core

Lufan Zou, Xiaoyi Bao, and Liang Chen
Opt. Lett. 28(21) 2022-2024 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved