Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser

Not Accessible

Your library or personal account may give you access

Abstract

A fiber Bragg grating filter with ultranarrow dual-transmission bands implemented using the equivalent phase shift technique is demonstrated. A fiber ring laser that incorporates a dual-transmission-band fiber Bragg grating filter in the ring cavity is implemented. Dual-wavelength single-longitudinal-mode lasing with a wavelength spacing as small as 0.147nm at room temperature is experimentally demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Identical-dual-bandpass sampled fiber Bragg grating and its application to ultranarrow filters

Xueming Liu, Aoxiang Lin, Guoyong Sun, Dae Seung Moon, Dusun Hwang, and Youngjoo Chung
Appl. Opt. 47(30) 5637-5643 (2008)

Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier

Bo Lin, Swee Chuan Tjin, Han Zhang, Dingyuan Tang, Jianzhong Hao, Bo Dong, and Sheng Liang
Appl. Opt. 49(36) 6855-6860 (2010)

Tunable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser using a phase-shifted grating on a triangular cantilever

Meng Jiang, Bo Lin, Perry Ping Shum, Swee Chuan Tjin, Xinyong Dong, and Qizhen Sun
Appl. Opt. 50(13) 1900-1904 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.