Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • CLEO/Europe and EQEC 2011 Conference Digest
  • OSA Technical Digest (CD) (Optica Publishing Group, 2011),
  • paper CLEB4_1

Laser microstructured 3D polymeric biocompatible implants

Not Accessible

Your library or personal account may give you access

Abstract

In this report we present experimental results on biocompatibility based on stem cell growth experiments in vitro as well as reaction of living organism to polymer implants in vivo of femtosecond laser 3D micro/nanostructurable photopolymers. A synergetic study on materials for rapid 3D scaffold fabrication having micrometer features and being centimeter in size, their biocompatibility in vitro and in vivo was done. The systematic study was performed providing consistent information which is important for further progress in cell growth and tissue engineering experiments. The chosen materials where of four different classes: well known biocompatible hybrid ORMO-CER (Ormocore b59, Micro Resist) [1], widely used biodegradable di-acrylated poly(ethylene)glycol (PEG-DA-258, Sigma-Aldrich) [2], pure acrylate AKRE (SR368, Sartomer) [3] and novel high quality laser structurable material ORMOSIL (SZ2080, FORTH) [4]. All of the materials were evaluated by their suitability for femtosecond laser structuring, which is well established as a technique enabling rapid and flexible production of 3D micro/nanostructures. All photopolymers could be 3D structured with < 1 µm resolution and up to cm in overall sizes, thus materializing the computer models of the scaffolds with required pore sizes and porosities. The typical dimensions of scaffolds were 5 × 5 × 0.5 mm3 discs with 25 µm pore sizes and 40-60% porosity.

© 2011 IEEE

PDF Article
More Like This
Laser microstructured 3D polymeric biocompatible implants

Mangirdas Malinauskas, Daiva Baltriukiene, Antanas Kraniauskas, Paulius Danilevicius, Evaldas Balciunas, Albertas Zukauskas, Vytautas Purlys, Raimondas Sirmenis, Virginija Bukelskiene, Roaldas Gadonas, Vytautas Sirvydis, and Algis Piskarskas
CLEB4_1 The European Conference on Lasers and Electro-Optics (CLEO/Europe) 2011

Advances of Additive Laser Based Micro-Manufacturing Technologies for Cartilage Tissue Engineering: a Pre-Clinical Study

S. Rekštytė, S. Butkus, E. Skliutas, S. Juodkazis, and M. Malinauskas
CM_1_5 The European Conference on Lasers and Electro-Optics (CLEO/Europe) 2015

Direct Laser Writing of Polylactide 3D Scaffolds

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, C. Fotakis, M. Farsari, and F. Claeyssens
CLEB4_4 The European Conference on Lasers and Electro-Optics (CLEO/Europe) 2011

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved