Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Linear excitation schemes for IR planar-induced fluorescence imaging of CO and CO2

Not Accessible

Your library or personal account may give you access

Abstract

A detailed discussion of linear excitation schemes for IR planar-induced fluorescence (PLIF) imaging of CO and CO2 is presented. These excitation schemes are designed to avoid laser scattering, absorption interferences, and background luminosity while an easily interpreted PLIF signal is generated. The output of a tunable optical parametric amplifier excites combination or overtone transitions in these species, and InSb IR cameras collect fluorescence from fundamental transitions. An analysis of the dynamics of pulsed laser excitation demonstrates that rotational energy transfer is prominent; hence the excitation remains in the linear regime, and standard PLIF postprocessing techniques may be used to correct for laser sheet inhomogeneities. Analysis of the vibrational energy-transfer processes for CO show that microsecond-scale integration times effectively freeze the vibrational populations, and the fluorescence quantum yield following nanosecond-pulse excitation can be made nearly independent of the collisional environment. Sensitivity calculations show that the single-shot imaging of nascent CO in flames is possible. Signal interpretation for CO2 is more complicated, owing to strongly temperature-dependent absorption cross sections and strongly collider-dependent fluorescence quantum yield. These complications limit linear CO2 IR PLIF imaging schemes to qualitative visualization but indicate that increased signal level and improved quantitative accuracy can be achieved through consideration of laser-saturated excitation schemes.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
CO2 imaging with saturated planar laser-induced vibrational fluorescence

Brian J. Kirby and Ronald K. Hanson
Appl. Opt. 40(33) 6136-6144 (2001)

Temperature and pressure imaging using infrared planar laser-induced fluorescence

David A. Rothamer and Ronald K. Hanson
Appl. Opt. 49(33) 6436-6447 (2010)

Picosecond planar laser-induced fluorescence measurements of OH A2 Σ+ (ν′ = 2) lifetime and energy transfer in atmospheric pressure flames

Frank C. Bormann, Tim Nielsen, Michael Burrows, and Peter Andresen
Appl. Opt. 36(24) 6129-6140 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved