Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 45,
  • Issue 5,
  • pp. 808-818
  • (1991)

Noninvasive Polymer Reaction Monitoring by Infrared Emission Spectroscopy with Multivariate Statistical Modeling

Not Accessible

Your library or personal account may give you access

Abstract

Infrared absorption and emission spectroscopy have been used to monitor the curing of a commercial paint product. Principal component analysis of the absorption data indicates that three factors are needed to explain the observed spectral/temporal variance. The interpretation of this finding in terms of changes in the physical state of the reaction mixture is discussed. A similar analysis of the emission data proved more difficult due to a nonlinear concentration/response relationship. A linearization step based on an approximate theoretical model is suggested. The absorption, linearized emittance, and raw emittance data are fit to a two-step sequential rate model using multivariate nonlinear optimization and error estimates derived by Monte Carlo calculations. Better agreement of the model parameters between the absorbance and emittance data is found after linearization, but it is found that linearization introduces large errors in the nonlinear parameter estimates. Comparisons of model parameters for the raw emittance data at different temperatures are made.

PDF Article
More Like This
Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers

Ryosuke Kasahara, Saiko Kino, Shunsuke Soyama, and Yuji Matsuura
Biomed. Opt. Express 9(1) 289-302 (2018)

Constrained nonlinear method for estimating component spectra from multicomponent mixtures

Keiji Sasaki, Satoshi Kawata, and Shigeo Minami
Appl. Opt. 22(22) 3599-3603 (1983)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.