Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 56,
  • Issue 12,
  • pp. 1600-1606
  • (2002)

Near-Infrared Transmission Spectroscopy of Aqueous Solutions: Influence of Optical Pathlength on Signal-to-Noise Ratio

Not Accessible

Your library or personal account may give you access

Abstract

The optimal choice of optical pathlength, source intensity, and detector for near-infrared transmission measurements of trace components in aqueous solutions depends on the strong absorption of water. In this study we examine under which experimental circumstances one may increase the pathlength to obtain a measurement with higher signal-to-noise ratio. The noise level of measurements at eight different pathlengths from 0.2 to 2.0 mm of pure water and of 1 g/dL aqueous glucose signals were measured using a Fourier transform near-infrared spectrometer and a variable pathlength transmission cell. The measurements demonstrate that the noise level is determined by the water transmittance. The noise levels in the spectral region from 5000 to 4000 cm<sup>-1</sup> show that the optimal pathlength (0.4 mm) is the same for pure water and 1 g/dL aqueous glucose solutions. When detector saturation occurs it is favorable to increase the pathlength instead of attenuating the light source. The obtained results are explained by an analytical model.

PDF Article
More Like This
Temperature measurements of turbid aqueous solutions using near-infrared spectroscopy

Naoto Kakuta, Hidenobu Arimoto, Hideyuki Momoki, Fuguo Li, and Yukio Yamada
Appl. Opt. 47(13) 2227-2233 (2008)

In vitro measurements of physiological glucose concentrations in biological fluids using mid-infrared light

Sabbir Liakat, Kevin A. Bors, Tzu-Yung Huang, Anna P. M. Michel, Eric Zanghi, and Claire F. Gmachl
Biomed. Opt. Express 4(7) 1083-1090 (2013)

Optical Constants in the Infrared for Aqueous Solutions of NaCl†

Marvin R. Querry, Richard C. Waring, Wayne E. Holland, G. Michael Hale, and William Nijm
J. Opt. Soc. Am. 62(7) 849-855 (1972)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.