Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 21,
  • pp. 3578-3584
  • (2014)

Theoretical Accuracy Analysis of Indoor Visible Light Communication Positioning System Based on Received Signal Strength Indicator

Not Accessible

Your library or personal account may give you access

Abstract

This paper analyzes an indoor positioning system using white lighting LEDs. The performance of the positioning system is determined by the layout of LEDs, the receiver circuit, incidence angle of light, LED light source, and the photodiode. The Cramer–Rao bound as the theoretical accuracy limitation of received signal strength indicator algorithm is derived. The influences to positioning accuracy of multipath reflections and unparallel optical axis of LEDs and receivers are analyzed in certain scenarios. It is concluded that if the diffuse channel gain is measured previously in a certain environment and the modulation speed is far less than the channel cutoff frequency, the theoretical accuracy limit is not affected by multipath link. Multiple noises of system are analyzed in detail. The influence to positioning accuracy of indoor uniform illumination is also discussed. The result proves that the theoretical estimated accuracy of triangular LEDs array is higher than square LEDs array. With typical parameter values, the simulated theoretical accuracy of system is up to the level of centimeter.

© 2014 IEEE

PDF Article
More Like This
Impact of multipath effects on theoretical accuracy of TOA-based indoor VLC positioning system

Xuqing Sun, Jingyuan Duan, Yonggang Zou, and Ancun Shi
Photon. Res. 3(6) 296-299 (2015)

Indoor receiving signal strength based visible light positioning enabled with equivalent virtual lamps

Wenjing Sun, Jian Chen, and Changyuan Yu
Appl. Opt. 62(17) 4583-4590 (2023)

Indoor three-dimensional high-precision positioning system with bat algorithm based on visible light communication

Li Huang, Ping Wang, Zhongyu Liu, Xi Nan, Lingling Jiao, and Lixin Guo
Appl. Opt. 58(9) 2226-2234 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.