Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Influences of reference plane and direction of measurement on eye aberration measurement

Not Accessible

Your library or personal account may give you access

Abstract

We explored effects of measurement conditions on wave aberration estimates for uncorrected, axially myopic model eyes. Wave aberrations were initially referenced to either the anterior corneal pole or the natural entrance pupil of symmetrical eye models, with rays traced into the eye from infinity (into the eye) to simulate normal vision, into the eye from infinity and then back out of the eye from the retinal intercepts (into/out of the eye), or out of the eye from the retinal fovea (out of the eye). The into-the-eye and out-of-the-eye ray traces gave increases in spherical aberration as myopia increased, but the into/out-of-the-eye ray trace showed little variation in spherical aberration. Reference plane choice also affected spherical aberration. Corresponding residual aberrations were calculated after the models had been optically corrected, either by placing the object or image plane at the paraxial far point or by modifying corneas to simulate laser ablation corrections. Correcting aberrations by ablation was more complete if the original aberrations were referenced to the cornea rather than to the entrance pupil. For eyes corrected by spectacle lenses, failure to allow for effects of pupil magnification on apparent entrance pupil diameter produced larger changes in measured aberrations. The general findings regarding choice of reference plane and direction of measurement were found to be equally applicable to eyes that lacked rotational symmetry.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Wavefront-guided correction of ocular aberrations: Are phase plate and refractive surgery solutions equal?

Linda E. Marchese, Rejean Munger, and David Priest
J. Opt. Soc. Am. A 22(8) 1471-1481 (2005)

Statistical variation of aberration structure and image quality in a normal population of healthy eyes

Larry N. Thibos, Xin Hong, Arthur Bradley, and Xu Cheng
J. Opt. Soc. Am. A 19(12) 2329-2348 (2002)

Mechanism of compensation of aberrations in the human eye

Juan Tabernero, Antonio Benito, Encarna Alcón, and Pablo Artal
J. Opt. Soc. Am. A 24(10) 3274-3283 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved