Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fast reconstruction and prediction of frozen flow turbulence based on structured Kalman filtering

Not Accessible

Your library or personal account may give you access

Abstract

Efficient and optimal prediction of frozen flow turbulence using the complete observation history of the wavefront sensor is an important issue in adaptive optics for large ground-based telescopes. At least for the sake of error budgeting and algorithm performance, the evaluation of an accurate estimate of the optimal performance of a particular adaptive optics configuration is important. However, due to the large number of grid points, high sampling rates, and the non-rationality of the turbulence power spectral density, the computational complexity of the optimal predictor is huge. This paper shows how a structure in the frozen flow propagation can be exploited to obtain a state-space innovation model with a particular sparsity structure. This sparsity structure enables one to efficiently compute a structured Kalman filter. By simulation it is shown that the performance can be improved and the computational complexity can be reduced in comparison with auto-regressive predictors of low order.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Kalman filtering to suppress spurious signals in adaptive optics control

Lisa A. Poyneer and Jean-Pierre Véran
J. Opt. Soc. Am. A 27(11) A223-A234 (2010)

Fast computation of an optimal controller for large-scale adaptive optics

Paolo Massioni, Caroline Kulcsár, Henri-François Raynaud, and Jean-Marc Conan
J. Opt. Soc. Am. A 28(11) 2298-2309 (2011)

Sparse data-driven wavefront prediction for large-scale adaptive optics

Paulo Cerqueira, Pieter Piscaer, and Michel Verhaegen
J. Opt. Soc. Am. A 38(7) 992-1002 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (64)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved