Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spatial–temporal-covariance-based modeling, analysis, and simulation of aero-optics wavefront aberrations

Not Accessible

Your library or personal account may give you access

Abstract

We introduce a framework for modeling, analysis, and simulation of aero-optics wavefront aberrations that is based on spatial–temporal covariance matrices extracted from wavefront sensor measurements. Within this framework, we present a quasi-homogeneous structure function to analyze nonhomogeneous, mildly anisotropic spatial random processes, and we use this structure function to show that phase aberrations arising in aero-optics are, for an important range of operating parameters, locally Kolmogorov. This strongly suggests that the d5/3 power law for adaptive optics (AO) deformable mirror fitting error, where d denotes actuator separation, holds for certain important aero-optics scenarios. This framework also allows us to compute bounds on AO servo lag error and predictive control error. In addition, it provides us with the means to accurately simulate AO systems for the mitigation of aero-effects, and it may provide insight into underlying physical processes associated with turbulent flow. The techniques introduced here are demonstrated using data obtained from the Airborne Aero-Optics Laboratory.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Optimal and adaptive control of aero-optical wavefronts for adaptive optics

Jonathan Tesch and Steve Gibson
J. Opt. Soc. Am. A 29(8) 1625-1638 (2012)

Dynamic mode decomposition based predictive model performance on supersonic and transonic aero-optical wavefront measurements

Benjamin D. Shaffer, Austin J. McDaniel, Christopher C. Wilcox, and Edwin S. Ahn
Appl. Opt. 60(25) G170-G180 (2021)

Extended Taylor frozen-flow hypothesis and statistics of optical phase in aero-optics

Sudhakar Prasad
J. Opt. Soc. Am. A 34(6) 931-942 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (73)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.