Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing

Not Accessible

Your library or personal account may give you access

Abstract

We have formed low-loss fusion splices from highly nonlinear (HNL) photonic crystal fibers (PCFs) with small cores and high air-filling fractions to fibers with much larger mode field diameters (MFDs). The PCF core was locally enlarged by the controlled collapse of holes around the core while keeping other holes open. The fiber was then cleaved at the enlarged core and spliced to the large MFD fiber with a conventional electric arc fusion splicer. Splice losses as low as 0.36dB were achieved between a PCF and a standard single-mode fiber (SMF) with MFDs of 1.8μm and 5.9μm, respectively.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges

Limin Xiao, Wei Jin, and M. S. Demokan
Opt. Lett. 32(2) 115-117 (2007)

Pressure-assisted low-loss fusion splicing between photonic crystal fiber and single-mode fiber

Tao Zhu, Fufeng Xiao, Laicai Xu, Min Liu, Ming Deng, and Kin Seng Chiang
Opt. Express 20(22) 24465-24471 (2012)

Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression

Jesper Toft Kristensen, Andreas Houmann, Xiaomin Liu, and Dmitry Turchinovich
Opt. Express 16(13) 9986-9995 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.