Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optofluidic Nano-Plasmonics for Biosensing

Not Accessible

Your library or personal account may give you access

Abstract

Optofluidic plasmonics, consisting of integrated microfluidics with optics and plasmonics, is an emerging research direction that enables advancement of fundamentals in surface sciences of plasmonic fields with unique implications on numerous potential applications in chemistry, biochemistry, biology, medicine, and engineering. Plasmonics possesses unique physical properties that enable localization of optical fields beyond the diffraction limit. These highly confined/nanoscale optical modes will enhance light/matter interactions in systems with free electrons in micro/nanoscale geometric structures. New applications and devices that are expected to directly benefit from these light confined modes include biochemical sensors (SERS, SECARS), optical nonlinearities (SHG, etc.), near field probes and data storage, nanoscale lasers, left handed materials and “perfect” lens, enhanced light extraction/detection, detectors and thermo/photovoltaics, sub diffraction-limit lithography, modulators, spectral filters, interconnects, etc.

© 2011 Optical Society of America

PDF Article
More Like This
Optofluidic Nano-Plasmonics for Biochemical Sensing

Y. Fainman, L. Pang, B. Slutsky, and J. Ptasinski
FWB1 Frontiers in Optics (FiO) 2009

Optofluidic Nano-Plasmonics for Biochemical Sensing

Y. Fainman, L. Pang, B. Slutsky, J. Ptasinski, L. Feng, and M. Chen
LTuI1 Laser Science (LS) 2010

Plasmonic Absorption in Random Metallic Nano-islands: Sensing, Nano-optical-trapping and Optofluidics

Ho-Pui Ho, Zhiwen Kang, and Jia-Jie Chen
OT4C.1 Optoelectronic Devices and Integration (OEDI) 2015

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved