Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Radial phase variation computing: a tool to improve flaw detection in optical diagnosis by shearographic images

Not Accessible

Your library or personal account may give you access

Abstract

Shearography is an optical and nondestructive technique that has been largely used for damage detection in layered composite materials where delaminations and debondings are found to be among the most common flaws. Shearography detects derivative of the displacements. It is a relative measurement in which two images are recorded for different loading conditions of the sample. The applied loading induces some deformations into the sample, generating a displacement field on its surface. Thermal, acoustical, or mechanical loading are typical excitations applied in a static or dynamic way. The absolute difference between two phase maps recorded at two different loading instances produces an interference fringe pattern, which is directly correlated to the displacements produced on the material surface. In some cases, depending on the loading level and mainly on the sample geometry, interference patterns will contain fringes resulting from geometry changes. This will mask those fringes correlated to flaws introduced into the material, resulting in an image misinterpretation. This phenomenon takes place mainly when the sample has curved geometries, as in, for example, pipe or vessel surfaces. This paper presents an algorithm that uses a mathematical process to improve the visualization of flaws in shearographic images. The mathematical process is based on the calculation of the phase variation, and it is used to search for local deformations contained in the image. This algorithm highlights defect regions and eliminates fringes caused by geometry changes, providing an easier interpretation for complex shearographic images. This paper also shows the principle and the algorithm used for the process. Results, advantages, and difficulties of the method are presented and discussed by using simulated fringe maps as well as real ones.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Robust method to improve the quality of shearographic phase maps obtained in harsh environments

A. V. Fantin, D. P. Willemann, M. E. Benedet, and A. G. Albertazzi
Appl. Opt. 55(6) 1318-1323 (2016)

Michelson interferometer based spatial phase shift shearography

Xin Xie, Lianxiang Yang, Nan Xu, and Xu Chen
Appl. Opt. 52(17) 4063-4071 (2013)

Panoramic dual-directional shearography assisted by a bi-mirror

Hanyang Jiang, Yinhang Ma, Meiling Dai, Xiangjun Dai, Fujun Yang, and Xiaoyuan He
Appl. Opt. 59(19) 5812-5820 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved