Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dual-channel dispersionless slow light based on plasmon-induced transparency

Not Accessible

Your library or personal account may give you access

Abstract

I have proposed a dual-channel dispersionless slow-light waveguide system based on plasmon-induced transparency. By appropriately tuning the stub depth, two transparency windows in the transmission spectrum can be achieved due to the destructive interference between the electromagnetic fields from the three stubs. Two flat bands can be achieved in the transparency windows, which have nearly constant group indices over the bandwidth of 2 THz. The analytical results show that the group velocity dispersion parameters of the two channels equal zero, which indicates that the incident pulse can be slowed down without distortion. The proposed plasmonic waveguide system can realize slow-light effect without pulse distortion, and thus can find important applications on slow-light systems, optical buffers, and all-optical signal processors in highly integrated optical circuits.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Slow light engineering in periodic-stub-assisted plasmonic waveguide

Guoxi Wang
Appl. Opt. 52(9) 1799-1804 (2013)

Method proposing a slow light ring resonator structure coupled with a metal–dielectric–metal waveguide system based on plasmonic induced transparency

Mehdi Hassani Keleshtery, Hassan Kaatuzian, Ali Mir, and Ashkan Zandi
Appl. Opt. 56(15) 4496-4504 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved