Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Standoff two-color quantum ghost imaging through turbulence

Not Accessible

Your library or personal account may give you access

Abstract

Recently, a two-color quantum ghost imaging configuration was proposed by Karmakar et al. [Phys. Rev. A 81, 033845 (2010)]. By illuminating an object located far away from the source and detector, with a signal beam of long wavelength to avoid absorption of short wavelengths in the atmosphere while a reference beam of short wavelength is detected locally, this imaging configuration can be appropriate for standoff sensing. In practice, the signal beam must propagate through atmosphere in the presence of serious turbulence. We analyzed theoretically the performance of this ghost imaging configuration through turbulence. Based on the Gaussian state source model and extended Huygens–Fresnel integral, a formula is derived to depict the ghost image formed through turbulence of a standoff reflective object. Numerical calculations are also given according to the formula. The results show that the image quality will be degraded by the turbulence, but the resolution can be improved by means of optimizing the wavelengths of the reference and signal beams even when the turbulence is very serious.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Two-wavelength ghost imaging through atmospheric turbulence

Dongfeng Shi, Chengyu Fan, Pengfei Zhang, Hong Shen, Jinghui Zhang, Chunhong Qiao, and Yingjian Wang
Opt. Express 21(2) 2050-2064 (2013)

Ghost imaging through turbulent atmosphere

Jing Cheng
Opt. Express 17(10) 7916-7921 (2009)

Adaptive optical ghost imaging through atmospheric turbulence

Dongfeng Shi, Chengyu Fan, Pengfei Zhang, Jinghui Zhang, Hong Shen, Chunhong Qiao, and Yingjian Wang
Opt. Express 20(27) 27992-27998 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved