Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient speckle reduction for a laser illuminating on a micro-vibrated paper screen

Not Accessible

Your library or personal account may give you access

Abstract

We have demonstrated an efficient speckle reduction method for laser illumination using a micro-vibrated paper screen along the projection direction. Using this method, a micro-vibrated amplitude of 0.532 μm, or a 2π phase change is sufficient to de-correlate the generated speckle pattern for a static SHG green laser beam image. When the measured speckle contrast is lowered to about 5.0%, and comparable with an LED source, a speckle-free image can be achieved. This technique will be suitable for compact and portable laser illumination equipment, image display, signal sensing devices, and so forth. Wearable and near-to-eye laser display applications are also included.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser speckle reduction via colloidal-dispersion-filled projection screens

Falko Riechert, Georg Bastian, and Uli Lemmer
Appl. Opt. 48(19) 3742-3749 (2009)

Efficient speckle-suppressed white light source by micro-vibrated and color-mixing techniques for lighting applications

Shih-Yu Tu, Hoang Yan Lin, and Tsung-Xian Lee
Opt. Express 23(20) 26754-26768 (2015)

Speckle reduction in laser projection using a dynamic deformable mirror

Thi-Kim-Trinh Tran, Xuyuan Chen, Øyvind Svensen, and Muhammad Nadeem Akram
Opt. Express 22(9) 11152-11166 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved