Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High laser-resistant multilayer mirrors by nodular defect planarization [Invited]

Not Accessible

Your library or personal account may give you access

Abstract

Substrate defect planarization has been shown to increase the laser resistance of 1053 nm mirror coatings to greater than 100J/cm2, an increase of 20-fold, when tested with 10 ns laser pulses. Substrate surface particles that are overcoated with optical interference mirror coatings become nodular defects, which behave as microlenses intensifying light into the defect structure. By a discrete process of angle-dependent ion etching and unidirectional ion-beam deposition, substrate defects can be reduced in cross-sectional area by over 90%.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Nanosecond laser-induced damage of nodular defects in dielectric multilayer mirrors [Invited]

Xinbin Cheng, Abudusalamu Tuniyazi, Jinlong Zhang, Tao Ding, Hongfei Jiao, Bin Ma, Zeyong Wei, Hongqiang Li, and Zhanshan Wang
Appl. Opt. 53(4) A62-A69 (2014)

Further investigation of the characteristics of nodular defects

Xiaofeng Liu, Dawei Li, Yuan'an Zhao, and Xiao Li
Appl. Opt. 49(10) 1774-1779 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved