Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Gain and bandwidth investigation in a near-zero ultra-flat dispersion PCF for optical parametric amplification around the communication wavelength

Not Accessible

Your library or personal account may give you access

Abstract

In this work, we explore the fiber optical parametric amplifiers (FOPAs) gain and bandwidth spectra of near-zero ultra-flattened photonic crystal fibers (PCFs) around the communication wavelength. The parametric gain and spectral bandwidth have been explored for all the three zero-dispersion wavelengths (ZDWs) of the near-zero ultra-flat fiber. Our numerical analysis establishes a dispersion profile with D=0±0.35ps/nm/km for a bandwidth of 440 nm around the communication wavelength to fully exploit the four-wave mixing effect with three ZDWs for broadband applications. It has been observed that the broader gain spectrum of FOPAs can be achieved with the near-zero and ultra-flattened dispersion curve with proper tuning of the pumping condition. A broader bandwidth with sufficient peak gain value has been achieved with small negative anomalous dispersion (β20) and positive value of fourth-order dispersion parameter (+veβ4) around the pumping wavelength. Wider bandwidth of the parametric amplifier has been observed around the second ZDW with a negative slope of the dispersion curve. A total bandwidth 520nm could be achieved with the ultra-flat dispersion nature of the optimized PCF. The design methodology of achieving wider gain by tuning the pumping wavelength for favorable higher-order dispersion parameters would be very useful for future dispersion engineered devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical parametric gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber with four zero-dispersion wavelengths

Tong Hoang Tuan, Tonglei Cheng, Koji Asano, Zhongchao Duan, Weiqing Gao, Dinghuan Deng, Takenobu Suzuki, and Yasutake Ohishi
Opt. Express 21(17) 20303-20312 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved