Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

On-orbit characterization of the VIIRS solar diffuser and solar diffuser screen

Not Accessible

Your library or personal account may give you access

Abstract

We analyze bidirectional reflectance factors (BRF) of the solar diffuser (SD) and vignetting function (VF) of the SD screen (SDS) for on-board calibration of the visible infrared imaging radiometer suite (VIIRS). Specific focus is placed on the products of the BRF and VF, which are the main inputs for calibration of the SD and its accompanying solar diffuser stability monitor (SDSM), which tracks SD degradation. A set of 14 spacecraft yaw maneuvers for the Suomi National Polar-Orbiting Partnership satellite, which houses the VIIRS instrument, was carefully planned and carried out over many orbits to provide the necessary information on the dependence of VIIRS instrument response on solar angles. Along with the prelaunch measurements for the SDS VF and SD BRF, the absolute form of the BRF-VF product is determined for each of the reflective solar bands (RSB) and the SDSM detectors. Consequently, the absolute form of the SDS VF also is obtained from the RSB and SDSM detectors using the yaw maneuver data. The results show that the BRF-VF product for an RSB is independent of the detector, gain status, and half-angle mirror side. The derived VFs from the RSB and the SDSM detectors also show reasonable agreement with each other, as well as with the prelaunch VF measurements, and further demonstrate only geometrical dependence, which, in this work, is characterized by solar angles. The derived calibration coefficients, called the F-factors, from the application of the derived functions in this study show a significantly improved pattern. A small band-dependent residual seasonal fluctuation on the level of 0.2%0.4% remains in the F-factors for each RSB and is further improved by a corrective function with linear dependence on the solar azimuth angle in the nominal attitude instrument coordinate system to the VF. For satellite ocean color remote sensing, on-orbit instrument calibration and characterization are particularly important for producing accurate and consistent ocean color products. The result of this work has the most significant and direct impact on ocean color products.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
On-orbit characterization of the VIIRS solar diffuser and attenuation screens for NOAA-20 using yaw measurements

Junqiang Sun, Mike Chu, and Menghua Wang
Appl. Opt. 57(22) 6605-6619 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (27)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved