Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 11,
  • Issue 11,
  • pp. 112502-
  • (2013)

Optical behavior of self-assembled high-density Ge nanoislands embedded in SiO2

Not Accessible

Your library or personal account may give you access

Abstract

The radio frequency magnetron sputtering method is used to prepare well-dispersed pyramidal-shaped Ge nanoislands embedded in amorphous SiO2 sublayers of various thicknesses. The estimated size and number density of Ge nanoislands in SiO2 sublayer thicknesses beyond 30 nm are approximately 15 nm and 1011 cm-2, respectively. Atomic force microscopy (AFM) reveals root mean square (RMS) roughness sensitivity as the SiO2 sublayer thickness varies from 30 to 40 nm. The formation of nanoislands with high aspect ratios is attributed to the higher rate of surface reactions between Ge adatoms and nucleated Ge islands than reactions associated with SiO2 and Ge. The Ge nanoisland polyorientation on SiO2 (50-nm thickness) is revealed by X-ray diffraction (XRD) patterns. Photoluminescence (PL) peaks of 2.9 and 1.65 eV observed at room temperature (RT) are attributed to the radiative recombination of electrons and holes from the Ge nanoislands/SiO2 and SiO2/Si interfaces, respectively. The mean island sizes are determined by fitting the experimental Raman profile to two models, namely, the phonon confinement model and the size distribution combined with phonon confinement model. The latter model yields the best fit to the experimental data. We confirm that SiO2 matrix thickness variations play a significant role in the formation of Ge nanoislands mediated via the minimization of interfacial and strain energies.

© 2013 Chinese Optics Letters

PDF Article
More Like This
Size-independent low-frequency Raman scattering in Ge-nanocrystal-embedded SiO2 films

L. Z. Liu, X. L. Wu, F. Gao, Y. M. Yang, T. H. Li, and Paul K. Chu
Opt. Lett. 35(7) 1022-1024 (2010)

Hot spot statistics and SERS performance of self-assembled silver nanoisland films

Ekaterina Babich, Sergey Scherbak, Fabrice Asonkeng, Thomas Maurer, and Andrey Lipovskii
Opt. Mater. Express 9(10) 4090-4096 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.