Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 11,
  • Issue 9,
  • pp. 091601-
  • (2013)

Watt-level Yb-doped silica glass fiber laser with a core made by sol-gel method

Not Accessible

Your library or personal account may give you access

Abstract

A Yb-doped silica glass fiber laser with a core made by sol-gel method is reported. The maximum power of 1.14 W is obtained with a pump power of 5.46 W at a wavelength of 976 nm. The slope efficiency is 34%. The refractive index fluctuation across the core is below 5×10-4 at a doping level of Yb 0.15 mol%, A2O3 4.0 mol%, and P2O5 2.0 mol%. High background attenuation of 6 dB/m at 1 053 nm limites the slope efficiency and maximum output power.

© 2013 Chinese Optics Letters

PDF Article
More Like This
Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method

Shikai Wang, Wenbin Xu, Fengguang Lou, Lei Zhang, Qinling Zhou, Danping Chen, Wei Chen, Suya Feng, Meng Wang, Chunlei Yu, and Lili Hu
Opt. Mater. Express 6(1) 69-78 (2016)

2 μm laser properties of Tm3+-doped large core sol-gel silica fiber

Fengguang Lou, Pei-Wen Kuan, Lei Zhang, Shikai Wang, Qinling Zhou, Meng Wang, Suya Feng, Kefeng Li, Chunlei Yu, and Lili Hu
Opt. Mater. Express 4(6) 1267-1275 (2014)

Yb3+-doped silica glass rod with high optical quality and low optical attenuation prepared by modified sol-gel technology for large mode area fiber

Shikai Wang, Wenbin Xu, Fan Wang, Fengguang Lou, Lei Zhang, Qinling Zhou, Danping Chen, Suya Feng, Meng Wang, Chunlei Yu, and Lili Hu
Opt. Mater. Express 7(6) 2012-2022 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.