Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 12,
  • Issue 11,
  • pp. 111902-
  • (2014)

Increased temperature acceptance bandwidth in frequency-doubling process using two different crystals

Not Accessible

Your library or personal account may give you access

Abstract

The temperature acceptance bandwidth of second-harmonic generation (SHG) can be dramatically improved by using two different kinds of nonlinear crystals with opposite signs of temperature derivation of phase mismatch. We study two SHG processes for the existing 1064 and 1550 nm high-average-power lasers. The numerical results show that the temperature acceptance bandwidth for SHG at 1064 nm can be three to five times larger than that of traditional single-crystal design, and it is also larger than that of using temperature-insensitive yttrium calcium oxyborate crystal. Importantly, the proposed design is applicable to various wavelengths, which suggests its potential in high-average-power SHG applications.

© 2014 Chinese Optics Letters

PDF Article
More Like This
Temperature-insensitive frequency tripling for generating high-average power UV lasers

Haizhe Zhong, Peng Yuan, Shuangchun Wen, and Liejia Qian
Opt. Express 22(4) 4267-4276 (2014)

Temperature-insensitive frequency conversion by phase mismatch self-compensation in the same type of crystals

Zijian Cui, Dean Liu, Lailin Ji, Mingying Sun, Jie Miao, and Jianqiang Zhu
Opt. Express 25(24) 30479-30493 (2017)

Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals

A. V. Smith, D. J. Armstrong, and W. J. Alford
J. Opt. Soc. Am. B 15(1) 122-141 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.