Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 12,
  • Issue 12,
  • pp. 120401-120401
  • (2014)

Detection of a directly modulated terahertz light with quantum-well photodetector

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate a wireless transmission link at 3.9 THz over a distance of 0.5 m by employing a terahertz (Hz) quantum-cascade laser (QCL) and a THz quantum-well photodetector (QWP). We make direct voltage modulation of the THz QCL and use a spectral-matched THz QWP to detect the modulated THz light from the laser. The small signal model and a direct voltage modulation scheme of the laser are presented. A square wave up to 30 MHz is added to the laser and detected by the THz detector. The bandwidth limit of the wireless link is also discussed.

© 2014 Chinese Optics Letters

PDF Article
More Like This
Terahertz two-photon quantum well infrared photodetector

H. Schneider, H. C. Liu, S. Winnerl, C. Y. Song, M. Walther, and M. Helm
Opt. Express 17(15) 12279-12284 (2009)

Terahertz frontside-illuminated quantum-well photodetector

Mikhail Patrashin and Iwao Hosako
Opt. Lett. 33(2) 168-170 (2008)

Detection sensitivity of laser feedback interferometry using a terahertz quantum cascade laser

J. Keeley, K. Bertling, P. L. Rubino, Y. L. Lim, T. Taimre, X. Qi, I. Kundu, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, J. Cunningham, and P. Dean
Opt. Lett. 44(13) 3314-3317 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.