Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analysis of Laser and Detector Placement in Incoherent MIMO Multimode Fiber Systems

Not Accessible

Your library or personal account may give you access

Abstract

Conventional large-core multimode fibers (MMFs) are preferred for use in short to medium haul optical fiber links, owing to their tolerance to misalignment and low deployment costs; however, data rates through MMFs are limited by modal dispersion. Digital signal processing with multiple-input multiple-output (MIMO) techniques has offered promising solutions to overcome the dispersion limitations of MMFs, but the impact of the geometry of laser and detector arrays on the achievable data rate is not established. To this end, we use a field-propagation-based model to gauge the impact the geometry of lasers and detectors can have on the achievable ergodic and outage rates of incoherent MIMO-MMF links. Laser and detector array geometries were investigated using a grid-based method to optimize the positions of lasers and detectors for a 1 km MIMO-MMF link. Simulations reveal that systems with appropriately designed laser/detector geometries could improve the achievable rate over the fiber by more than 200% over random laser/detector arrays. The grid-based search technique, however, is limited due to high computational requirements for fine grids. As an alternative, we developed a suboptimal “greedy” selection approach to design detector geometries, which produces detector geometries that attain more than 90% of the rate obtained with an exhaustive search, while requiring less than 0.2% of the computation. The low computation requirements and high performance of the greedy selection approach also motivate the use of dynamically reconfigurable detector arrays to achieve high data rates with reduced signal processing complexity. Methods are also presented for clustering detector elements to obtain more consolidated segmented detectors with better fill factors, while still offering significant data rate benefits. The achievable ergodic rate using these systems is verified to be close to the link’s ergodic capacity.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Impact of fiber core diameter on dispersion and multiplexing in multimode-fiber links

Kumar Appaiah, Sriram Vishwanath, and Seth R. Bank
Opt. Express 22(14) 17158-17171 (2014)

Adaptation of the Mode Group Diversity Multiplexing Technique for Radio Signal Transmission Over Multimode Fiber

M. Awad, I. Dayoub, W. Hamouda, and J.-M. Rouvaen
J. Opt. Commun. Netw. 3(1) 1-9 (2011)

Protocol Design and Performance Analysis of Multiuser Mixed RF and Hybrid FSO/RF Relaying With Buffers

Yasser F. Al-Eryani, Anas M. Salhab, Salam A. Zummo, and Mohamed-Slim Alouini
J. Opt. Commun. Netw. 10(4) 309-321 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.