Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

One-dimensional description of cylindrically symmetric laser beams: application to Bessel-type nondiffracting beams

Not Accessible

Your library or personal account may give you access

Abstract

We introduce a new representation of coherent laser beams that are usually described in circular cylindrical coordinates. This representation is based on the decomposition of a laser beam of a given azimuthal order into beams exhibiting Cartesian symmetry. These beams, which we call constituent waves, diffract along only one of their transverse dimensions and propagate noncollinearly with the propagation axis. A cylindrically symmetric laser beam is then considered a coherent superposition of constituent waves and is represented by an integral over an angular variable. Such a representation allows for the introduction of the propagation factor M2, defined in terms of one-dimensional root-mean-square (rms) quantities, in the treatment of two-dimensional beams. The representation naturally leads to the definition of a new rms parameter that we call the quality factor Q. It is shown that the quality factor defines in quantitative terms the nondiffracting character of a laser beam. The representation is first applied to characterize Laguerre–Gauss beams in terms of these one-dimensional rms parameters. This analysis reveals an asymptotic link between Laguerre–Gauss beams and one-dimensional Hermite–Gauss beams in the limit of high azimuthal orders. The representation is also applied to Bessel–Gauss beams and demonstrates the geometrical and one-dimensional characters of the Bessel–Gauss beams that propagate in a nondiffracting regime. By using two separate rms parameters, Q and M2, our approach gives an alternative way to describe laser beam propagation that is especially well suited to characterize Bessel-type nondiffracting beams.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Characterization of the constituent wave of a diffracting and a nondiffracting axisymmetric laser beam

Guy Rousseau, David Gay, and Michel Piché
Opt. Express 13(19) 7589-7598 (2005)

Relationship between elegant Laguerre–Gauss and Bessel–Gauss beams

Miguel A. Porras, Riccardo Borghi, and Massimo Santarsiero
J. Opt. Soc. Am. A 18(1) 177-184 (2001)

Modified Bessel nondiffracting beams

S. Ruschin
J. Opt. Soc. Am. A 11(12) 3224-3228 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (67)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved