Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analysis of scattering from complex dielectric objects using the generalized method of moments

Not Accessible

Your library or personal account may give you access

Abstract

Integral equation-based analysis of scattering from dielectric objects has been a topic of research for many decades. Different integral equation formulations, discretization methods, and comparative data of their relative advantages have been well studied. Traditional discretization methods typically rely on a tight coupling between the underlying geometry discretization and the approximation function space that is defined on this discretization. As a result, it is difficult to stitch together different approximation spaces or nonconformal domains or match basis sets to local physics. Furthermore, the basis sets most commonly used in discretizing dielectric boundary integral operators impose limits on the variety of integral equation formulations that can be employed. We recently published a methodology [J. Opt. Soc. Am. A 28, 328 (2011) [CrossRef]  ] that overcomes several of these bottlenecks. In the present paper, we introduce several extensions to these concepts for dielectric scattering problems. Specifically, we present a method that (i) uses mixed higher order local geometric descriptions and (ii) mixes multiple basis sets defined on this geometry, including higher order polynomials and classical Rao–Wilton–Glisson functions. Furthermore, we provide a unified description of different integral equation formulations that can be used for the analysis of scattering from dielectric objects, and show that the present approach admits a larger range of formulations than existing methods. A number of results demonstrating the efficiency of the method (in terms of accuracy and capability) together with applicability to different formulations are presented.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Generalized method of moments: a framework for analyzing scattering from homogeneous dielectric bodies

Naveen V. Nair and Balasubramaniam Shanker
J. Opt. Soc. Am. A 28(3) 328-340 (2011)

Decreasing the memory of the discontinuous Galerkin volume integral equation method for scattering from inhomogeneous dielectric objects

A-Li Deng, Qi-Gang Zhu, Bing-Zhong Ren, and Li-Ming Zhang
J. Opt. Soc. Am. A 40(9) 1654-1661 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.