Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Finite element-wavelet hybrid algorithm for atmospheric tomography

Not Accessible

Your library or personal account may give you access

Abstract

Reconstruction of the refractive index fluctuations in the atmosphere, or atmospheric tomography, is an underlying problem of many next generation adaptive optics (AO) systems, such as the multiconjugate adaptive optics or multiobject adaptive optics (MOAO). The dimension of the problem for the extremely large telescopes, such as the European Extremely Large Telescope (E-ELT), suggests the use of iterative schemes as an alternative to the matrix-vector multiply (MVM) methods. Recently, an algorithm based on the wavelet representation of the turbulence has been introduced in [Inverse Probl. 29, 085003 (2013)] by the authors to solve the atmospheric tomography using the conjugate gradient iteration. The authors also developed an efficient frequency-dependent preconditioner for the wavelet method in a later work. In this paper we study the computational aspects of the wavelet algorithm. We introduce three new techniques, the dual domain discretization strategy, a scale-dependent preconditioner, and a ground layer multiscale method, to derive a method that is globally O(n), parallelizable, and compact with respect to memory. We present the computational cost estimates and compare the theoretical numerical performance of the resulting finite element-wavelet hybrid algorithm with the MVM. The quality of the method is evaluated in terms of an MOAO simulation for the E-ELT on the European Southern Observatory (ESO) end-to-end simulation system OCTOPUS. The method is compared to the ESO version of the Fractal Iterative Method [Proc. SPIE 7736, 77360X (2010)] in terms of quality.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Performance comparison of wavefront reconstruction and control algorithms for Extremely Large Telescopes

I. Montilla, C. Béchet, M. Le Louarn, M. Reyes, and M. Tallon
J. Opt. Soc. Am. A 27(11) A9-A18 (2010)

Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography

Qiang Yang, Curtis R. Vogel, and Brent L. Ellerbroek
Appl. Opt. 45(21) 5281-5293 (2006)

Fast minimum variance wavefront reconstruction for extremely large telescopes

Eric Thiébaut and Michel Tallon
J. Opt. Soc. Am. A 27(5) 1046-1059 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved