Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Radiation forces on a Rayleigh particle by highly focused radially polarized beams modulated by DVL

Not Accessible

Your library or personal account may give you access

Abstract

The intensity and the radiation forces acting on a Rayleigh particle near the focus of completely coherent radially polarized beams whose phase are modulated by a devil’s vortex-lens (DVL) are studied. The influence of the structure of a DVL on the radiation force distribution is analyzed. It is found by numerical simulations that the modulated beams show a clear advantage over the unmodulated highly focused radially polarized beams, as the modulated beam can simultaneously trap and manipulate the multiple Rayleigh particles, while the unmodulated beam can trap only one particle under the same condition.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Radiation forces on a Rayleigh particle by highly focused partially coherent and radially polarized vortex beams

Jianhua Shu, Ziyang Chen, and Jixiong Pu
J. Opt. Soc. Am. A 30(5) 916-922 (2013)

Trapping of Rayleigh spheroidal particles by highly focused radially polarized beams

Manman Li, Shaohui Yan, Baoli Yao, Ming Lei, Yanlong Yang, Junwei Min, and Dan Dan
J. Opt. Soc. Am. B 32(3) 468-472 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.