Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effect of damping on Goos–Hänchen shift from weakly absorbing anisotropic metamaterials

Not Accessible

Your library or personal account may give you access

Abstract

The effect of damping on the Goos–Hänchen (GH) shift from weakly absorbing anisotropic metamaterials is investigated. Explicit formulas of the GH shifts are derived and analyzed at three particular angles of incidence: critical angle, pseudo-Brewster angle, and grazing incidence, near which the reflection phases exhibit strong variations and large GH shifts are likely to occur. The damping in the anisotropic metamaterials may result in GH shifts not available in ordinary isotropic media. In particular, a larger GH shift can be associated with a larger rather than a smaller damping, and a small change of damping may even reverse the direction of the GH shift near the pseudo-Brewster angle. This feature is characterized by a parabolic relation determined by the complex components of the permittivity tensor. The GH shifts are also illustrated with the incidence of Gaussian beams based on Fourier integral formulation.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Goos–Hänchen shift on the surface of a polar crystal

Qiang Zhang, Sheng Zhou, Shu-Fang Fu, and Xuan-Zhang Wang
J. Opt. Soc. Am. B 36(6) 1429-1434 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved