Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Shape of Fano resonance line spectra calculated for silver nanorods

Not Accessible

Your library or personal account may give you access

Abstract

Using theoretical tools, we numerically demonstrated Fano line shapes in the scattering spectra of silver rods resulting from different mechanisms. One of the Fano line shapes is due to the coupling of an in-plane quadrupole and a dipole mode in a single rod. Two nodes were observed at the resonance wavelength, each of which is located at a quarter of the rod length from the two ends. The Fano resonance is strengthened when the silver rod is cut at the two nodal positions. The second mechanism that gives rise to a new Fano resonance peak occurs when the symmetry of the rod is broken and is a result of the asymmetric coupling between the two excited dipoles.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers

Zhong-Jian Yang, Zong-Suo Zhang, Li-Hui Zhang, Qun-Qing Li, Zhong-Hua Hao, and Qu-Quan Wang
Opt. Lett. 36(9) 1542-1544 (2011)

Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer

Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu
Opt. Express 21(5) 6601-6608 (2013)

Fano resonance by dipole–hexapole coupling in a χ-shaped plasmonic nanostructure

Kwang-Hyon Kim, Song-Hyok Kim, and Myong-Chol Bae
Appl. Opt. 54(10) 2710-2714 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.