Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Resonance in quantum dot fluorescence in a photonic bandgap liquid crystal host

Not Accessible

Your library or personal account may give you access

Abstract

Microcavity resonance is demonstrated in nanocrystal quantum dot fluorescence in a one-dimensional (1D) chiral photonic bandgap cholesteric-liquid crystal host under cw excitation. The resonance demonstrates coupling between quantum dot fluorescence and the cholesteric microcavity. Observed at a band edge of a photonic stop band, this resonance has circular polarization due to microcavity chirality with 4.9 times intensity enhancement in comparison with polarization of the opposite handedness. The circular-polarization dissymmetry factor ge of this resonance is 1.3. We also demonstrate photon antibunching of a single quantum dot in a similar glassy cholesteric microcavity. These results are important in cholesteric-laser research, in which so far only dyes were used, as well as for room-temperature single-photon source applications.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Hybrid fluorescent cholesteric materials with controllable light emission containing CdSe/ZnS quantum dots stabilized by liquid crystalline block copolymer

Miron A. Bugakov, Pavel S. Samokhvalov, Valery P. Shibaev, and Natalia I. Boiko
Opt. Mater. Express 11(7) 1842-1851 (2021)

Continuous wave mirrorless lasing in cholesteric liquid crystals with a pitch gradient across the cell gap

A. Muñoz, M. E. McConney, T. Kosa, P. Luchette, L. Sukhomlinova, T. J. White, T. J. Bunning, and B. Taheri
Opt. Lett. 37(14) 2904-2906 (2012)

Enhanced optical nonlinearity near the photonic bandgap edges of a cholesteric liquid crystal

Jisoo Hwang, N. Y. Ha, H. J. Chang, Byoungchoo Park, and J. W. Wu
Opt. Lett. 29(22) 2644-2646 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.