Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Enhancement of the accuracy of the simplified modal method for designing a subwavelength triangular grooves grating

Not Accessible

Your library or personal account may give you access

Abstract

The validity and accuracy of the simplified modal method for a highly efficient transmission subwavelength triangular grating are fully and quantitatively evaluated by a comparison of diffraction efficiencies predicted from the modal method to exact results calculated by a rigorous coupled wave analysis. The larger errors are revealed in smaller periods and in lower groove depths. More importantly, with the consideration of the reflection loss of the two propagating modes, the accuracy of the simplified modal method is significantly enhanced. The calculated diffraction efficiencies are in good agreement with the results of the vector method. This enhanced simplified modal method can be effectively used in the design of a shallower subwavelength grating. It is important to note that the consideration of the modal reflection loss can be applicable to any dielectric diffraction structure, e.g., the rectangular grating, in which the accuracy of the simplified modal method could be excellently improved to more exactly design a grating.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Improvement of the validity of the simplified modal method for designing a subwavelength dielectric transmission grating

Xufeng Jing, Junchao Zhang, Ying Tian, and Shangzhong Jin
Appl. Opt. 53(2) 259-268 (2014)

Design of highly efficient transmission gratings with deep etched triangular grooves

Xufeng Jing, Junchao Zhang, Shangzhong Jin, Pei Liang, and Ying Tian
Appl. Opt. 51(33) 7920-7933 (2012)

Simple design of slanted grating with simplified modal method

Shubin Li, Changhe Zhou, Hongchao Cao, and Jun Wu
Opt. Lett. 39(4) 781-784 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.