Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polarization-independent etching of fused silica based on electrons dynamics control by shaped femtosecond pulse trains for microchannel fabrication

Not Accessible

Your library or personal account may give you access

Abstract

We propose an approach to realize polarization-independent etching of fused silica by using temporally shaped femtosecond pulse trains to control the localized transient electrons dynamics. Instead of nanograting formation using traditional unshaped pulses, for the pulse delay of pulse trains larger than 1 ps, coherent field-vector-related coupling is not possible and field orientation is lost. The exponential growth of the periodic structures is interrupted. In this case, disordered and interconnected nanostructures are formed, which is probably the main reason of etching independence on the laser polarization. As an application example, square-wave-shaped and arc-shaped microchannels are fabricated by using pulse trains to demonstrate the advantage of the proposed method in fabricating high-aspect-ratio and three-dimensional microchannels.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Etching rate enhancement by shaped femtosecond pulse train electron dynamics control for microchannels fabrication in fused silica glass

Pengjun Liu, Lan Jiang, Jie Hu, Xueliang Yan, Bo Xia, and Yongfeng Lu
Opt. Lett. 38(22) 4613-4616 (2013)

High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching

Zhi Wang, Lan Jiang, Xiaowei Li, Andong Wang, Zhulin Yao, Kaihu Zhang, and Yongfeng Lu
Opt. Lett. 43(1) 98-101 (2018)

Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching

Krishna Chaitanya Vishnubhatla, Nicola Bellini, Roberta Ramponi, Giulio Cerullo, and Roberto Osellame
Opt. Express 17(10) 8685-8695 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.