Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Excited state Faraday anomalous dispersion optical filters based on indirect laser pumping

Not Accessible

Your library or personal account may give you access

Abstract

The direct pump method now used in excited state Faraday anomalous dispersion optical filters (ES-FADOFs) requires that the transition between the target and the ground state is an electric dipole allowed transition and that a laser that operates at the exact pump wavelength is available. This is not always satisfied in practice. An indirect laser pump method for ES-FADOF is proposed and experimentally realized. Compared with the commonly used direct pump method, this indirect pump method can reach the same performance using lasers at very different wavelengths. This method can greatly extend the wavelength range of FADOF and provide a novel scheme for ES-FADOF design.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis of excited-state Faraday anomalous dispersion optical filter at 1529 nm

Junyu Xiong, Longfei Yin, Bin Luo, and Hong Guo
Opt. Express 24(13) 14925-14933 (2016)

An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping

Longfei Yin, Bin Luo, Anhong Dang, and Hong Guo
Opt. Express 22(7) 7416-7421 (2014)

Isotope 87Rb Faraday anomalous dispersion optical filter at 420  nm

Li Ling and Gang Bi
Opt. Lett. 39(11) 3324-3327 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.