Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

A Holographic Interferometer for Measuring Radiation Energy Deposition Profiles in Transparent Liquids

Not Accessible

Your library or personal account may give you access

Abstract

An apparatus has been designed for real-time and double-exposure holographic interferometry to determine radiation absorbed dose distributions in transparent liquids. The change in refractive index of the liquid due to a temperature rise after irradiation is measured interferometrically. In a cylindrically symmetrical radiation field, the dose distribution can be computed from data supplied by the reconstruction of the holographic interferogram taken as side-view profile of the change in optical pathlength. Relatively inexpensive components such as a low-powered He–Ne laser together with a conventional photographic shutter and low-cost mirrors and lenses were used. The mathematical procedure for unfolding the three-dimensional dose distribtion is described, and an example is given for use with a high-intensity, pulsed, 2-MV electron source.

© 1971 Optical Society of America

Full Article  |  PDF Article
More Like This
Radiation-induced Changes in Refractive Index and Absorption Coefficient for Several Optical Materials

D. R. Olson, H. D. Dieselman, and J. B. Schroeder
Appl. Opt. 10(1) 81-86 (1971)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.