Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Infrared to Visible Parametric Upconversion

Not Accessible

Your library or personal account may give you access

Abstract

Experiments have been performed to evaluate the use of parametric laser image upconversion in proustite to convert 10.6-μm illuminated objects into visible images. The experiments evaluated the key parameters, and the results were compared to the theory. A diffuse scatterplate was illuminated with radiation from a CO2 laser operating at 10.6 μm. The upconversion efficiency, angle of acceptance, tunability, bandwidth, and image resolution of the system were measured. The results were found to be in agreement with theory. The upconversion efficiency of the 1-cm-long mixer used was 6 × 10−6 for a local oscillator power density of 44 W/cm2. The half-power angle of acceptance for a 1-cm-long mixer was found to be 8°. Different frequency modes of the CO2 laser were identifiable by first tuning the laser and then following with the mixer. The tuning constant near 10.6 μm was measured to be 0.25 μm per degree of optic axis rotation. The acceptance bandwidth of the 1-cm-long proustite mixer was found to be 0.015 μm. In the imaging experiments, a diffuse reflecting, 100% contrast bar chart sequence was used to measure resolution, which, limited by transverse multimode local oscillator beam divergence, was found to be 20 mrad/cycle for a 25% depth of modulation in the upconverted signal. A source of internal parametric light was observed in the proustite mixer. Measurements of the light level, its temperature dependence, its phase matching dependence, a comparison with upconverted external blackbody radiation, and second-order parametric effects have been made. The light appears to be upconverted thermal radiation from within the proustite mixer.

© 1972 Optical Society of America

Full Article  |  PDF Article
More Like This
Upconversion—a Systems View

A. Fenner Milton
Appl. Opt. 11(10) 2311-2330 (1972)

Theory of Thermal Imaging Using Infrared to Visible Image Up-Conversion

K. F. Hulme and J. Warner
Appl. Opt. 11(12) 2956-2964 (1972)

Infrared upconversion for astronomical applications

M. M. Abbas, T. Kostiuk, and K. W. Ogilvie
Appl. Opt. 15(4) 961-970 (1976)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved