OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 20, Iss. 11 — Jun. 1, 1981
  • pp: 1902–1924

Laser fusion experiments, facilities, and diagnostics at Lawrence Livermore National Laboratory

H. G. Ahlstrom  »View Author Affiliations


Applied Optics, Vol. 20, Issue 11, pp. 1902-1924 (1981)
http://dx.doi.org/10.1364/AO.20.001902


View Full Text Article

Enhanced HTML    Acrobat PDF (3567 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The progress of the LLNL Laser Fusion Program in our work to achieve high gain thermonuclear microexplosions is discussed. Many experiments have been successfully performed and diagnosed using the large complex twenty-beam 30-TW Shiva laser system. A 400-kJ design of the twenty-beam Nova laser has been completed. The construction of the first phase of this facility has begun. The first phase of this Nd-doped low nonlinear index glass laser will consist of ten beams producing 100 kJ in 1-nsec pulses. One beam of the Argus laser has been converted to operation at 532 nm with 10-cm aperture. It will soon operate at 355 nm, also at 10-cm aperture. Frequency conversion crystals are being procured for full aperture operation at either 532 or 355 nm for both Argus beams. We also discuss new diagnostic instruments which provide us with new and improved resolution, information on laser absorption and scattering, thermal energy flow, suprathermal electrons and their effects, and final fuel conditions. We have made measurements on the absorption and Brillouin scattering for target irradiations at both 1.064 μm and 532 nm. These measurements confirm the expected increased absorption and reduced scattering at the shorter wavelength. Additional data have been obtained on the angular distribution of suprathermal x rays, which further confirms our observation of its nonisotropy. However, we do not yet have an explanation of the phenomena. Implosion experiments have been performed which have produced final fuel densities over the 10–100× range liquid deuterium-tritium (DT) density. The 100× achievement is the highest yet achieved in laser fusion DT fuel targets.

© 1981 Optical Society of America

History
Original Manuscript: April 28, 1980
Published: June 1, 1981

Citation
H. G. Ahlstrom, "Laser fusion experiments, facilities, and diagnostics at Lawrence Livermore National Laboratory," Appl. Opt. 20, 1902-1924 (1981)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-20-11-1902

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited