OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 22, Iss. 1 — Jan. 1, 1983
  • pp: 149–151

Photocounting statistics associated with temperature fluctuations in semiconductor lasers

D. A. Buchanan and P. G. Gulak  »View Author Affiliations


Applied Optics, Vol. 22, Issue 1, pp. 149-151 (1983)
http://dx.doi.org/10.1364/AO.22.000149


View Full Text Article

Enhanced HTML    Acrobat PDF (406 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoelectron counting distributions are obtained for sources which obey compound Poisson statistics. Various cases are considered in which the sources (semiconductor lasers) emit coherent light and their intensity fluctuates in accordance with a Gaussian distribution of operating temperatures. The lasers are otherwise assumed to be ideal, and the quantum efficiency of the detector is assumed to be unity. This paper represents an ideal situation where the source is the only concern in the calculation of the photoelectron counting distributions. It is found that for large temperature fluctuations (σ > 10 K), a substantial downward shift of the peak of the photon probability density function is observed. The function becomes more asymmetric and the mean value decreases as the standard deviation of the temperature increases.

© 1983 Optical Society of America

History
Original Manuscript: July 29, 1982
Published: January 1, 1983

Citation
D. A. Buchanan and P. G. Gulak, "Photocounting statistics associated with temperature fluctuations in semiconductor lasers," Appl. Opt. 22, 149-151 (1983)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-22-1-149


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Troup, Photon Counting and Photon Statistics, Congress in Quantum Electronics (Pergamon, London, 1972).
  2. P. Diament, M. C. Teich, Appl. Opt. 10, 1664 (1971). [CrossRef] [PubMed]
  3. P. Diament, M. C. Teich, J. Opt. Soc. Am. 60, 682 (1970). [CrossRef]
  4. P. R. Prucnal, M. C. Teich, J. Opt. Soc. Am. 69, 539 (1979). [CrossRef]
  5. T. L. Paoli, IEEE J. Quantum Electron. QE-11, 276 (1975). [CrossRef]
  6. T. L. Paoli, Appl. Phys. Lett. 24, 187 (1974). [CrossRef]
  7. H. C. Casey, M. B. Panish, Heterostructure Lasers, Part A: Fundamental Principles (Academic, New York, 1978), pp. 177–178.
  8. S. M. Sze, Physics of Semiconductor Devices (Wiley-Interscience, New York, 1981), pp. 731.
  9. L. Mandel, Proc. Phys. Soc. London 72, 1037 (1958). [CrossRef]
  10. W. T. Tsang, R. A. Logan, J. P. Van der Ziel, Appl. Phys. Lett. 34, 644 (1979). [CrossRef]
  11. N. K. Dutta, R. J. Nelson, IEEE J. Quantum Electron. QE-18, 871 (1982). [CrossRef]
  12. Y. Horikoshi, Y. Furukawa, Jpn. J. Appl. Phys. 18, 809 (1979). [CrossRef]
  13. G. H. B. Thompson, G. D. Henshall, Electron. Lett. 16, 42 (1980). [CrossRef]
  14. N. K. Dutta, R. J. Nelson, “Temperature Dependence of the Threshold of InGaAsP DH Lasers and Auger Recombination,” in Proceedings, International Symposium on GaAs and Related Compounds, Vienna, Austria, 22–24 Sept. 1980, Inst. Phys. Conf. Ser. 56, pp. 193.
  15. N. K. Dutta, R. J. Nelson, Appl. Phys. Lett. 38, 407 (1981). [CrossRef]
  16. A. Sugimura, IEEE J. Quantum Electron. QE-17, 627 (1981). [CrossRef]
  17. T. U. K. Iwamoto, R. Lang, Appl. Phys. Lett. 38, 193 (1981). [CrossRef]
  18. N. K. Dutta, J. Appl. Phys. 52, 70 (1981). [CrossRef]
  19. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1965), pp. 65, 98–111.
  20. M. H. Lean, “Electromagnetic Field Solution with the Boundary Element Method,” Ph.D. Thesis, Department of Electrical Engineering, U. Manitoba (1981), pp. 22–17.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited