OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 22, Iss. 11 — Jun. 1, 1983
  • pp: 1722–1730

Simulation of optical coupling from surface emitting LEDs

David L. Shealy and Howard M. Berg  »View Author Affiliations

Applied Optics, Vol. 22, Issue 11, pp. 1722-1730 (1983)

View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A general computer simulation analysis of the coupling efficiency between surface emitting LEDs and optical fibers has been carried out using ray tracing techniques. Coupling efficiencies were evaluated as a function of both the fiber numerical aperture (N.A.) and the ratio of the fiber core diameter dF to the LED emission diameter dE for a spherical lens positioned between the LED and fiber. Coupling efficiencies near the theoretical maximum values were obtained for dF/dE ≤ 5 for 0.20-N.A. fibers and for dF/dE ≤ 2.5 for 0.40-N.A. fibers by optimizing the lens’s index of refraction and the LED-to-lens spacing.

© 1983 Optical Society of America

Original Manuscript: January 13, 1983
Published: June 1, 1983

David L. Shealy and Howard M. Berg, "Simulation of optical coupling from surface emitting LEDs," Appl. Opt. 22, 1722-1730 (1983)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Boltz, M. Ettenberg, IEEE Trans. Electron Devices ED-26, 1230 (1979).
  2. M. Abe et al., IEEE Trans. Electron Devices ED-24, 990 (1977). [CrossRef]
  3. L. G. Cohen, M. V. Schnieder, Appl. Opt. 13, 89 (1974). [CrossRef] [PubMed]
  4. J. Yamada et al., IEEE J. Quantum Electron. QE-16, 1067 (1980). [CrossRef]
  5. Y. Uematsu, IEEE J. Quantum Electron. QE-15, 86 (1979). [CrossRef]
  6. H. M. Berg, G. L. Lewis, C. W. Mitchell, IEEE Trans. Components Hybrids Manufacturing Technol. CHMT-4, 337 (1981). [CrossRef]
  7. S. Horiuchi et al., IEEE Trans. Electron Devices ED-24, 986 (1977). [CrossRef]
  8. J. G. Ackenhusen, Appl. Opt. 18, 3694 (1979). [CrossRef] [PubMed]
  9. R. C. Goodfellow et al., IEEE Trans. Electron Devices ED-26, 1215 (1979). [CrossRef]
  10. R. A. Abram, R. W. Allen, R. C. Goodfellow, J. Appl. Phys. 46(8), 3469 (1975). [CrossRef]
  11. J. Hunpage, R. Goodfellow, J. Ure, M. Faultless, “High Power, High Speed GaAlAs D.H. LED’s for Optical Communication,” to be published.
  12. J. Jarominski, Appl. Opt. 21, 2461 (1982). [CrossRef] [PubMed]
  13. O. Hasegawa, R. Namzu, N. Abe, Y. Toyama, J. Appl. Phys. 51, 30 (1980). [CrossRef]
  14. H. M. Berg, D. L. Shealy, C. M. Mitchell, D. Stevenson, M. Quill, L. Lofgran, Proc. Electron. Components Conf. 32, 111 (1982).
  15. R. Speer, B. Hawkins, Proc. Electron. Components Conf. 30, 270 (1980).
  16. B. Johnson et al., Proc. Electron. Components Conf. 30, 279 (1980).
  17. M. K. Barnoski, Fundamentals of Optical Fiber Communications (Academic, New York, 1976).
  18. N. S. Kaplan, Fiber Optics (Academic, New York, 1976).
  19. R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, New York, 1972).
  20. B. S. Kawasaki, D. C. Johnson, Opt. Quantum Electron. 7, 281 (1975). [CrossRef]
  21. Military Standardization Handbook; Optical Design, MIL-HDBK-141 (U.S. GPO, Washington, D.C., 1962).
  22. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1969).
  23. P. J. Davis, P. Rabinowitz, Methods of Numerical Integration (Academic, New York, 1975), p. 365.
  24. M. C. Hudson, Appl. Opt. 13, 1029 (1974). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited