OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 22, Iss. 5 — Mar. 1, 1983
  • pp: 690–697

Opto-optical light deflection

Glenn T. Sincerbox and Gerald Roosen  »View Author Affiliations

Applied Optics, Vol. 22, Issue 5, pp. 690-697 (1983)

View Full Text Article

Enhanced HTML    Acrobat PDF (1131 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light deflection is accomplished by diffraction from a transient index modulation established as a grating of variable frequency in an optical material by the interference of two controlling light beams. This device may be considered an opto-optical analog to an acoustooptical deflector, in that a change in angular deflection is created by altering the frequency of the diffraction grating. In this paper we report on a technique for altering the grating frequency by changing the wavelength of the control beams and the use of a novel optical system to maintain the Bragg condition over a wide range of frequencies. Configurations exhibiting very large angular deflections have been designed using a computer simulation and optimization program that allows minimization of the Bragg detuning. This new method of light deflection allows either discrete or continuous light scanning or modulation. A particular example using lithium niobate will be discussed which produces an 11.8° deflection from a 0.027-μm wavelength change and with an angular detuning of less than ±0.03°. The use of other materials, inorganic, organic, and dispersive, will also be discussed.

© 1983 Optical Society of America

Original Manuscript: September 17, 1982
Published: March 1, 1983

Glenn T. Sincerbox and Gerald Roosen, "Opto-optical light deflection," Appl. Opt. 22, 690-697 (1983)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Pieuchard, J. Flamand, Jpn. J. Appl. Phys. 14, Suppl. 14-1 (1975).
  2. L. D. Dickson, G. T. Sincerbox, A. D. Wolfheimer, IBM J. Res. Dev. 26, 228 (1982). [CrossRef]
  3. R. P. Kenan, D. W. Vahey, N. F. Hartman, V. E. Wood, C. M. Verber, Opt. Eng. 15, 12 (1976); W. S. Goruk, P. J. Vella, R. Normandin, G. I. Stegeman, Appl. Opt. 20, 4024 (1981). [CrossRef] [PubMed]
  4. D. W. Phillion, D. J. Kuizenga, A. E. Siegman, Appl. Phys. Lett. 27, 85 (1975). [CrossRef]
  5. S. M. Jensen, R. W. Hellwarth, Appl. Phys. Lett. 32, 167 (1978); A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978); C. R. Giuliano, Phys. Today, 27 (Apr.1981). [CrossRef]
  6. J. M. Telle, C. L. Tang, Appl. Phys. Lett. 26, 572 (1975). [CrossRef]
  7. J. M. Osterwalder, B. J. Rickett, IEEE J. Quantum Electron. QE-16, 250 (1980); B. Pokrowsky, G. C. Bjorklund, IBM San Jose Research; private communication. [CrossRef]
  8. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  9. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979). [CrossRef]
  10. R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493 (1971). [CrossRef]
  11. J. P. Huignard, J. P. Herriau, G. Rivet, P. Günter, Opt. Lett. 5, 102 (1980). [CrossRef] [PubMed]
  12. F. S. Chen, J. Appl. Phys. 40, 3389 (1969). [CrossRef]
  13. J. Feinberg, R. W. Hellwarth, Opt. Lett. 15, 519 (1980). [CrossRef]
  14. P. F. Liao, D. M. Bloom, Opt. Lett. 3, 4 (1978). [CrossRef] [PubMed]
  15. Y. Silberberg, I. Bar-Joseph, Opt. Commun. 39, 265 (1981). [CrossRef]
  16. A. F. Garito, K. D. Singer, Laser Focus, 59 (Feb.1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited