OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 22, Iss. 5 — Mar. 1, 1983
  • pp: 706–710

Heterodyne detection through rain, snow, and turbid media: effective receiver size at optical through millimeter wavelengths

L. G. Kazovsky and N. S. Kopeika  »View Author Affiliations


Applied Optics, Vol. 22, Issue 5, pp. 706-710 (1983)
http://dx.doi.org/10.1364/AO.22.000706


View Full Text Article

Enhanced HTML    Acrobat PDF (577 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Both scattering and turbulence can effect the spatial coherence of short wavelength signals propagating through the open atmosphere. In this paper, the influence of forward scattering on heterodyne receiver performance is investigated, taking into account turbulence. It is shown that the effect of forward scattering is to reduce the effective heterodyne receiver area through spatial coherence degradation. A common approach to scattering as an attenuation phenomenon is not always valid. Generally, this approach underestimates the SNR. The accuracy of the attenuation approach depends on the ratio R of the actual receiver diameter to the scattering particle diameter. If R > 100, scattering is essentially large angle and the typical treatment of scattering as an attenuation effect is indeed justified. However, for small R, forward scattering is primarily small angle, field coherence is noticeably affected by forward scattering, and the attenuation approach is not valid. Further, it is shown that the SNR is improved when the ratio of the scattering particulate size to turbulence coherence diameter decreases. From the practical point of view, the most important result of this study is that small receivers use their area more effectively than large receivers. Thus, an array of several small receivers may perform better than one large receiver with the same total area. The treatment here is particularly relevant for coherent detection through clouds, fog, precipitation, and turbid media in general, including liquid media.

© 1983 Optical Society of America

History
Original Manuscript: February 18, 1982
Published: March 1, 1983

Citation
L. G. Kazovsky and N. S. Kopeika, "Heterodyne detection through rain, snow, and turbid media: effective receiver size at optical through millimeter wavelengths," Appl. Opt. 22, 706-710 (1983)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-22-5-706


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Fried, Proc. IEEE 55, 57 (1967). [CrossRef]
  2. R. M. Gagliardi, S. Karp, Optical Communications (Wiley, New York, 1976), pp. 173–201.
  3. J. R. Clark, J. R. Baird, R. S. Rearden, Appl. Opt. 15, 314 (1976). [CrossRef] [PubMed]
  4. P. Bruscaglioni, G. Milloni, G. Zaccanti, Opt. Acta 27, 1229 (1980). [CrossRef]
  5. G. C. Mooradian, M. Geller, P. H. Levine, L. B. Stotts, D. H. Stephens, Appl. Opt. 19, 11 (1980). [CrossRef] [PubMed]
  6. A. Ishimaru, Opt. Eng. 20, 63 (1981). [CrossRef]
  7. J. H. Shapiro, C. Warde, Opt. Eng. 20, 76 (1981). [CrossRef]
  8. D. J. Laws, S. A. Parsons, “The Relation of Raindrop Size to Intensity,” Trans. Am. Geophys. Union, pp. 452–460 (1943).
  9. V. N. Kelkar, Indian J. Meteorol. Geophys. 4, 583 (1961).
  10. G. E. Weibel, H. O. Dressel, Proc. IEEE 55, 497 (1967). [CrossRef]
  11. S. L. Goddard, IEEE Trans. Antennas Propag. AP-18, 530 (1970). [CrossRef]
  12. Y. Furuhama, T. Ihara, IEEE Trans. Antennas Propag. AP-29, 275 (1981). [CrossRef]
  13. R. K. Crane, “Microwave Scattering Parameters for New England Rain,” MIT, Lexington, Mass., 1966, AD-647798.
  14. R. F. Lutomirski, Appl. Opt. 17, 3915 (1978). [CrossRef] [PubMed]
  15. D. A. deWolf, Appl. Opt. 17, 1280 (1978). [CrossRef]
  16. D. E. Setzer, Bell Syst. Tech. J. 49, 1873 (1970).
  17. H. T. Yura, Appl. Opt. 10, 114 (1971). [CrossRef] [PubMed]
  18. A. Ishimaru, Appl. Opt. 17, 348 (1978). [CrossRef] [PubMed]
  19. G. V. Rozenberg, Atmos. Ocean Phys. 3, 930 (1967).
  20. R. L. Olsen, Radio Sci. 16, 761 (1981). [CrossRef]
  21. F. Fedi, “Atmospheric Effects on Electromagnetic-Wave Free Propagation at Frequencies Above 19 GHz,” in Proceedings, European Microwave Conference 2, Brussels, Belgium (1973).
  22. N. S. Kopeika, S. Solomon, Y. Gencay, J. Opt. Soc. Am. 71, 892 (1981). [CrossRef]
  23. N. S. Kopeika, J. Opt. Soc. Am. 72, 1092 (1982). [CrossRef]
  24. G. R. Ochs, R. R. Bergman, J. R. Snyder, J. Opt. Soc. Am. 59, 231 (1969). [CrossRef]
  25. M. C. Thompson, F. E. Marier, K. C. Allen, IEEE Trans. Antennas Propag. AP-28, 278 (1980). [CrossRef]
  26. S. F. Clifford, J. W. Strohbehn, IEEE Trans. Antennas Propag. AP-18, 264 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited