OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 22, Iss. 6 — Mar. 15, 1983
  • pp: 830–834

Coherent optical production of the Hough transform

George Eichmann and B. Z. Dong  »View Author Affiliations

Applied Optics, Vol. 22, Issue 6, pp. 830-834 (1983)

View Full Text Article

Enhanced HTML    Acrobat PDF (570 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Hough transform (HT) is an efficient shape detector that maps straight lines into a two-parameter feature space. Recently it has been pointed out that the forward Radon transform (FRT), well known from the theory of computed tomography, and the HT are equivalent for binary images. In this paper, analog coherent optical implementation of the FRT is discussed. The FRT will not only be of use in implementing the HT shape descriptors but also act as a coherent optical preprocessor for the implementation of multidimensional convolution, correlation, and spectral analysis using 1-D acoustooptical signal processing devices. Several different coherent optical FRT architectures are presented. Experimental results using conventional coherent Fourier transform configuration are given. The relationship between the coherent optical implementation of the FRT and the inverse Radon transform, an important tool in computed tomography, is also detailed.

© 1983 Optical Society of America

Original Manuscript: September 7, 1982
Published: March 15, 1983

George Eichmann and B. Z. Dong, "Coherent optical production of the Hough transform," Appl. Opt. 22, 830-834 (1983)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. V. C. Hough, “Methods and Means for Recognizing Complex Patterns,” U.S. Patent3,069,654 (1962).
  2. W. K. Pratt, Digital Image Processing (Wiley-Interscience, New York, 1978).
  3. S. D. Shapiro, A. Iannino, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1, 310 (1979). [CrossRef]
  4. R. O. Duda, P. E. Hart, Commun. ACM 15, 11 (1972). [CrossRef]
  5. S. R. Deans, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2, 185(1981). [CrossRef]
  6. J. Radon, Ber. Saechs. Akad. Wiss. Leipzig 69, 262 (1917).
  7. K. R. Sloan, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 87(1982). [CrossRef]
  8. R. Gordon, R. Bender, G. T. Herman, J. Theor. Biol. 29, 471 (1970). [CrossRef] [PubMed]
  9. W. M. Boerner, C. M. Ho, B. Y. Foo, IEEE Trans. Antennas Propag. AP-29, 336 (1981). [CrossRef]
  10. R. C. Chase, F. H. Seguin, M. Gerassimenko, R. Petrasso, Proc. Soc. Photo-Opt. Instrum. Eng. 231, 265 (1980).
  11. R. M. Mersereau, A. V. Oppenheim, Proc. IEEE 62, 1319 (1974). [CrossRef]
  12. Technical Digest, Topical Meeting on Imaging Processing for 2-D and 3-D Reconstructions from Projections (Optical Society of America, Washington, D.C., 1975).
  13. Z. H. Cho, Ed., Special issue on Physical and Computational Aspects of 3-D Image Reconstruction, IEEE Trans. Nucl. SciNS-21 (June1971).
  14. B. K. Gilbert, A. Chu, D. E. Atkins, E. E. Swartzlander, E. L. Ritman, Comput. Biomed. Res. 12, 17 (1979). [CrossRef] [PubMed]
  15. H. H. Barrett, W. Swindell, Proc. IEEE 65, 89 (1977). [CrossRef]
  16. E. W. Hansen, J. W. Goodman, Proc. Soc. Photo-Opt. Instrum. Eng. 231, 222 (1980).
  17. J. Hofer, Opt. Commun. 29, 22 (1979). [CrossRef]
  18. P. Edholm, L. G. Hellstrom, B. J. Jacobson, Phys. Med Biol 23, 90(1978). [CrossRef] [PubMed]
  19. H. Platzer, H. Glunder, “Tomogram—Reconstruction by Holographic Methods,” in Holography in Medicine and Biology, G. V. Bally, Ed. (Springer, New York, 1979), pp. 117–123.
  20. A. F. Gmitro, J. E. Greivenkamp, W. Swindell, H. H. Barrett, M. Y. Chiu, S. K. Gordon, Opt. Eng. 19, 260 (1980). [CrossRef]
  21. H. H. Barrett, Opt. Lett. 7, 248 (1982). [CrossRef] [PubMed]
  22. I. M. Gelfand, M. I. Graev, N. Ya. Vilkin, Generalized Functions (McGraw-Hill, New York, 1966), Vol. 5.
  23. S. D. Shapiro, Comput. Graph. Image Process. 8, 219 (1978). [CrossRef]
  24. J. Sklansky, IEEE Trans. Comput. COM-27, 923 (1978). [CrossRef]
  25. J. W. Goodman, “Linear Space-Variant Optical Processing,” in Optical Data Processing, Fundamentals, S. Lee, Ed. (Springer, New York, 1980).
  26. R. J. Marks, J. F. Walkup, M. O. Hagler, T. F. Krile, Appl Opt. 16, 739(1977). [CrossRef]
  27. D. Casasent, D. Psaltis, Appl. Opt. 15, 1795 (1976). [CrossRef] [PubMed]
  28. D. Casasent, D. Psaltis, “Deformation Invariant, Space-Variant Optica) Pattern Recognition,” in Progress in Optics, Vol. 18, E. Wolf, Ed., (North-Holland, Amsterdam, 1978). [CrossRef]
  29. G. Tyras, Radiation and Propagation of Electromagnetic Waves (Academic, New York, 1969), Chap. 8.
  30. G. Eichmann, R. Stirbl, R. Mammone, Proc. Soc. Photo-Opt. Instrum. Eng. 209, 24 (1979).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited