OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 22, Iss. 7 — Apr. 1, 1983
  • pp: 1016–1022

Sharp bends with low losses in dielectric optical waveguides

Ernst-Georg Neumann and Wolfgang Richter  »View Author Affiliations


Applied Optics, Vol. 22, Issue 7, pp. 1016-1022 (1983)
http://dx.doi.org/10.1364/AO.22.001016


View Full Text Article

Enhanced HTML    Acrobat PDF (894 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new method is proposed for making sharp bends with low radiation losses in dielectric optical waveguides. By modifying the transverse refractive-index profile at curved sections both the pure bend and the transition losses can be minimized. The optimum gradient-index profile requires an inhomogeneous medium. But in practice this can be replaced by a layered medium. By using four homogeneous layers the permitted radius of curvature of a slab waveguide can be reduced, e.g., from 6400 to only 100 wavelengths.

© 1983 Optical Society of America

History
Original Manuscript: July 8, 1982
Published: April 1, 1983

Citation
Ernst-Georg Neumann and Wolfgang Richter, "Sharp bends with low losses in dielectric optical waveguides," Appl. Opt. 22, 1016-1022 (1983)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-22-7-1016


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. D. Hutcheson, I. A. White, J. J. Burke, Opt. Lett. 5, 276 (1980). [CrossRef] [PubMed]
  2. S. Sheem, J. R. Whinnery, Wave Electron. 1, 61, 105 (1974/1975).
  3. M. Heiblum, J. H. Harris, IEEE J. Quantum Electron. QE-11, 75 (1975). [CrossRef]
  4. M. Desai, R. Mittra, in Proceedings, IEEE International Microwave Theory Techniques Symposium (1980), p. 211.
  5. M. Geshiro, Sh. Sawa, IEEE Trans. Microwave Theory Tech. MIT-29, 1182 (1981). [CrossRef]
  6. E.-G. Neumann, “Low loss dielectric optical waveguide bends,” to be published in Fibers Integr. Opt.4, No. 2 (1982).
  7. E.-G. Neumann, IEE Proc. 129, 278 (1982).
  8. E.-G. Neumann, German patent pending.
  9. D. Marcuse, Light Transmission Optics (Van Nostrand, New York, 1972), Chap. 1.3.
  10. H.-G. Unger, Optische Nachrichtentechnik (Elitera, Berlin, 1976), p. 28.
  11. E.-G. Neumann, Electron. Lett. 17, 369 (1981). [CrossRef]
  12. E. W. Marchand, Appl. Opt. 21, 983 (1982). [CrossRef] [PubMed]
  13. K. Simonyi, Theoretische Elektrotechnik (VEB Deutscher Verlag der Wissenschaften, Berlin, 1980), p. 730.
  14. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974), Sec. 1.4.
  15. H.-G. Unger, Planar Optical Waveguides and Fibers (Clarendon, Oxford, 1977), Sec. 2.3.
  16. R. Baets, P. E. Lagasse, “Loss calculation and design of arbitrarily curved integrated optic waveguides,” submitted to J. Opt. Soc. Am.
  17. F. W. J. Olver, Philos. Trans. R. Soc. London Ser. A 247, 328 (1954). [CrossRef]
  18. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited