OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 22, Iss. 8 — Apr. 15, 1983
  • pp: 1168–1174

Gaussian beam ray-equivalent modeling and optical design

Robert Herloski, Sidney Marshall, and Ronald Antos  »View Author Affiliations

Applied Optics, Vol. 22, Issue 8, pp. 1168-1174 (1983)

View Full Text Article

Enhanced HTML    Acrobat PDF (835 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is shown that the propagation and transformation of a simply astigmatic Gaussian beam by an optical system with a characteristic ABCD matrix can be modeled by relatively simple equations whose terms consist solely of the heights and slopes of two paraxial rays. These equations are derived from the ABCD law of Gaussian beam transformation. They can be used in conjunction with a conventional automatic optical design program to design and optimize Gaussian beam optical systems. Several design examples are given using the CODE-V optical design package.

© 1983 Optical Society of America

Original Manuscript: November 19, 1982
Published: April 15, 1983

Robert Herloski, Sidney Marshall, and Ronald Antos, "Gaussian beam ray-equivalent modeling and optical design," Appl. Opt. 22, 1168-1174 (1983)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. W. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966). [CrossRef] [PubMed]
  2. H. W. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).
  3. J. A. Arnaud, H. Kogelnik, Appl. Opt. 8, 1687 (1969). [CrossRef] [PubMed]
  4. J. A. Arnaud, Bell Syst. Tech. J. 49, 2311 (1970).
  5. W. H. Steier, Appl. Opt. 5, 1229 (1966). [CrossRef] [PubMed]
  6. J. A. Arnaud, Appl. Opt. 8, 1909 (1969). [CrossRef] [PubMed]
  7. J. A. Arnaud, “Hamiltonian Theory of Beam Mode Propagation,” in Progress in Optics, Vol. 11, E. Wolf, Ed. (North-Holland, Amsterdam, 1973). [CrossRef]
  8. CODE-V is a product of Optical Research Associates.
  9. H. Buchdahl, An Introduction to Hamiltonian Optics (Cambridge U.P.London, 1970).
  10. R. K. Luneburg, Mathematical Theory of Optics (U. California Press, Berkeley, 1964), pp. 216–243.
  11. P. J. Sands, J. Opt. Soc. Am. 62, 369 (1972). [CrossRef]
  12. P. J. Sands, J. Opt. Soc. Am. 58, 1365 (1968). [CrossRef]
  13. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), p. 43.
  14. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), pp. 435–438.
  15. R. P. Herloski, S. Marshall, R. L. Antos, J. Opt. Soc. Am. 72, 1106 (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited