OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 24, Iss. 3 — Feb. 1, 1985
  • pp: 388–395

Reflectivity of natural and powdered minerals at CO2 laser wavelengths

John E. Eberhardt, John G. Haub, and Arthur W. Pryor  »View Author Affiliations


Applied Optics, Vol. 24, Issue 3, pp. 388-395 (1985)
http://dx.doi.org/10.1364/AO.24.000388


View Full Text Article

Enhanced HTML    Acrobat PDF (1029 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The diffuse reflectance and depolarization properties of natural and powdered minerals were examined at 128 CO2 laser wavelengths. Powder reflectivity was classified into three regimes: (1) surface (reststrahlen); (2) low intermediate; and (3) bulk (Kubelka-Munk) remission from subsurface grains. Data are presented on NaCl, Al2O3, MgO, BaCO3, CaCO3, BaSO4, feldspar (NaAlSi3O8), and apatite [Ca5F(PO4)3]. Reduction of feldspar rocks to 210-μm grain size had little effect on their reflectance spectra. Kubelka-Munk-type behavior seems unlikely to dominate the reflectance spectra of natural surfaces. Albedos were measured for NaCl, sulfur, gold-plated sandpaper, graphite, and sandblasted aluminum.

© 1985 Optical Society of America

History
Original Manuscript: August 1, 1984
Published: February 1, 1985

Citation
John E. Eberhardt, John G. Haub, and Arthur W. Pryor, "Reflectivity of natural and powdered minerals at CO2 laser wavelengths," Appl. Opt. 24, 388-395 (1985)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-3-388


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. Eberhardt, A. A. Green, J. G. Haub, R. J. P. Lyon, A. W. Pryor, “Mid-Infrared Active and Passive Remote Sensing Systems and their Application to Geology and Mineral Exploration,” presented at International Geoscience and Remote Sensing Symposium, San Francisco, 31 Aug.–2 Sept., 1983.
  2. M. S. Shumate, S. Lindquist, U. Persson, S. T. Eng, “Differential Reflectance of Natural and Man-made Materials at CO2 Laser Wavelengths,” Appl. Opt. 21, 2386 (1982). [CrossRef] [PubMed]
  3. K. Asai, T. Igarashi, “Interference from Differential Reflectance of Moist Topographic Targets in CO2 Dial Ozone Measurement,” Appl. Opt. 23, 734 (1984). [CrossRef] [PubMed]
  4. G. Kortum, Reflectance Spectroscopy (Springer, New York, 1969), Chap. 4. [CrossRef]
  5. J. G. Edwards, P. A. Smith, “Properties of Some Diffusers for CO2 Lasers,” J. Phys. E 14, 1326 (1981). [CrossRef]
  6. A. Gross, “Polarization of Reflected 10.6-μm Radiation from Sublimed Sulfur Targets,” Appl. Opt. 22, 3031 (1983). [CrossRef] [PubMed]
  7. M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target Reflectance Measurements for Calibration of Lidar Atmospheric Backscatter Data,” Appl. Opt. 22, 2619 (1983). [CrossRef] [PubMed]
  8. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954), p. 116–128.
  9. A. Hadni, “The Interaction of Infrared Radiation with Crystals,” in The Infrared Spectra of Minerals, V. C. Farmer, Ed. (Mineralogical Society, London, 1974), p. 27.
  10. R. K. Vincent, G. R. Hunt, “Infrared Reflectance from Mat Surfaces,” Appl. Opt. 7, 53 (1968). [CrossRef] [PubMed]
  11. For a conventional description see R. A. Smith, F. E. Jones, R. P. Chasmar, The Detection and Measurement of Infrared Radiation (Clarendon, Oxford, 1957), p. 381–385.The influence on lithological identification is discussed by L. M. Logan, G. R. Hunt, J. W. Salisbury, S. R. Balsamo, in “Compositional Implications of Christiansen Frequency Maximums for Infrared Remote Sensing Applications,” J. Geophys. Res. 78, 4983 (1973). [CrossRef]
  12. Ref. 4, p. 111, Eq. (37).
  13. S. D. Allen, J. A. Harrington, “Optical Absorption in KCl and NaCl at Infrared Laser Wavelengths,” Appl. Opt. 17, 1679 (1978). [CrossRef] [PubMed]
  14. B. Piriou, F. Cabannes, “Transmission infrared du Corindon,” C. R. Acad. Sci. Ser. B 264, 1110 (1967).
  15. B. Piriou, F. Cabannes, “Absorption infrarouge de la Magnésie,” C. R. Acad. Sci. Ser. B 264, 630 (1967).
  16. V. C. Farmer, Ed., The Infrared Spectra of Minerals (Mineralogical Society, London, 1974), p. 240, Fig.12.7.
  17. P. Dawson, M. M. Hargreave, G. R. Wilkinson, “Polarized IR Reflection, Absorption and Laser Raman Studies on a Single Crystal of BaSO4,” Spectrochimica Acta Part A 33, 83 (1977). [CrossRef]
  18. Ref. 16, p. 437, Fig. 18.
  19. Ref. 16, p. 369, Figs. 16.1 and 16.2.
  20. L. C. Kravitz, J. D. Kingsley, E. L. Elkin, “Raman and Infrared Studies of Coupled PO4−3 Vibrations,” J. Chem. Phys. 49, 4600 (1968). [CrossRef]
  21. I. I. Shaganov, V. S. Libov, “Optical Characteristics of a Fluoroapatite Single Crystal in the Infrared,” Opt. Spectrosc. 35, 106 (1973).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited