OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 26, Iss. 22 — Nov. 15, 1987
  • pp: 4747–4754

Nonlocal thermodynamic equilibrium effects in stratospheric NO and implications for infrared remote sensing

Jack A. Kaye and John B. Kumer  »View Author Affiliations


Applied Optics, Vol. 26, Issue 22, pp. 4747-4754 (1987)
http://dx.doi.org/10.1364/AO.26.004747


View Full Text Article

Enhanced HTML    Acrobat PDF (1128 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown that the vibrational state population of stratospheric nitric oxide (NO) could be substantially different from that expected on the basis of local thermodynamic equilibrium (LTE). Deviations from LTE may arise because stratospheric NO can be photochemically produced from NO2 with several vibrational quanta. Model calculations suggest that the population of NO(υ = 1) could be some 30% above that expected from LTE at 30 km with smaller enhancements above and below. Substantially larger enhancements are predicted for NO(υ = 2). This result is shown to have important implications for NO determination by remote sensing of IR emission. Data needed for the quantification of these effects are enumerated.

© 1987 Optical Society of America

History
Original Manuscript: April 22, 1987
Published: November 15, 1987

Citation
Jack A. Kaye and John B. Kumer, "Nonlocal thermodynamic equilibrium effects in stratospheric NO and implications for infrared remote sensing," Appl. Opt. 26, 4747-4754 (1987)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-26-22-4747


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Gille, J. M. Russell, “The Limb Infrared Monitor of the Stratosphere: Experiment Description, Performance, and Results,” J. Geophys. Res. 89, 5125 (1984). [CrossRef]
  2. C. D. Rodgers, R. L. Jones, J. J. Barnett, “Retrieval of Temperature and Composition from NIMBUS 7 SAMS Measurements,” J. Geophys. Res. 89, 5280 (1984). [CrossRef]
  3. S. Solomon, J. T. Kiehl, B. J. Kerridge, E. E. Remsberg, J. M. Russell, “Evidence for Nonlocal Thermodynamic Equilibrium in the υ3 Mode of Mesospheric Ozone,” J. Geophys. Res. 91, 9865 (1986). [CrossRef]
  4. C. Reber, Upper Atmospheric Research Satellite (UARS) Mission, NASA/GSFC Report 430-1003-001, Greenbelt, MD (1985).
  5. T. C. Degges, “Vibrationally Excited Nitric Oxide in the Upper Atmosphere,” Appl. Opt. 10, 1856 (1971). [CrossRef] [PubMed]
  6. G. E. Caledonia, J. P. Kennealy, “NO Infrared Emission in the Upper Atmosphere,” Planet. Space Sci. 30, 1043 (1982). [CrossRef]
  7. A. T. Stair, R. D. Sharma, R. M. Nadile, D. J. Baker, W. F. Greider, “Observations of Limb Radiance with Cryogenic Spectral Infrared Rocket Experiment,” J. Geophys. Res. 90, 9763 (1985). [CrossRef]
  8. T. G. Slanger, W. K. Bischel, M. J. Dyer, “Nascent NO Vibrational Distribution from 2485 Å NO2 Photodissociation,” J. Chem. Phys. 79, 2231 (1983). [CrossRef]
  9. G. E. Busch, K. R. Wilson, “Triatomic Photofragment Spectra. I. Energy Partitioning in NO2 Photodissociation,” J. Chem. Phys. 56, 3626 (1972). [CrossRef]
  10. H. Zacharias, M. Geilhaupt, K. Meier, K. H. Welge, “Laser Photofragment Spectroscopy of the NO2 Dissociation at 337 nm. A Nonstatistical Decay Process,” J. Chem. Phys. 74, 218 (1981). [CrossRef]
  11. C. B. McKendrick, C. Fotakis, R. J. Donovan, “Laser Photodissociation of NO2 at 248 nm and Production of NO(A2Σ+ → X2Π) Fluorescence,” J. Photochem. 20, 175 (1982). [CrossRef]
  12. T. Ogawa, “Excitation Processes of Infrared Atmospheric Emissions,” Planet. Space Sci. 24, 749 (1976). [CrossRef]
  13. D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, R. T. Watson, “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry,” J. Phys. Chem. Ref. Data 9, 295 (1980). [CrossRef]
  14. F. J. Lipscomb, R. G. W. Norrish, B. A. Thrush, “The Study of Energy Transfer by Kinetic Spectroscopy I. The Production of Vibrationally Excited Oxygen,” Proc. R. Soc. London Ser. A 233, 455 (1956). [CrossRef]
  15. B. D. Green, G. E. Caledonia, R. E. Murphy, F. X. Robert, “The Vibrational Relaxation of NO(υ = 1−7) by O2,” J. Chem. Phys. 76, 2441 (1982). [CrossRef]
  16. L. Doyenette, M. Margottin-Maclou, “Vibrational Relaxation of NO(υ = 1) by NO, N2, CO, HCl, CO2, and N2O from 300 to 600 K,” J. Chem. Phys. 84, 6668 (1986). [CrossRef]
  17. J. C. Stephenson, “Vibrational Relaxation of NO X2Π(υ = 1) in the Temperature Range 100–300 K,” J. Chem. Phys. 60, 4289 (1974). [CrossRef]
  18. W. B. DeMore et al., “Chemical Kinetics and Photochemical Data for use in Stratospheric Modeling,” JPL Publ. 85-37 (JPL, Pasadena, CA, 1985).
  19. S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Calculations of the Temperature Dependence of the NO2 Photodissociation Coefficient in the Atmosphere,” J. Atmos. Chem. 1, 151 (1984). [CrossRef]
  20. D. F. Strobel, “Parameterization of the Atmospheric Heating Rate from 15 to 120 km due to O2 and O3 Absorption of Solar Radiation,” J. Geophys. Res. 83, 6225 (1978). [CrossRef]
  21. J. A. Kaye, C. H. Jackman, “Concentrations and Uncertainties of Stratospheric Trace Gases Inferred from Limb Infrared Monitor of the Stratosphere Data, 1, Methodology and Application to OH and HO2,” J. Geophys. Res. 91, 1117 (1986). [CrossRef]
  22. R. B. Bernstein, Chemical Dynamics Via Molecular Beam and Laser Techniques (Clarendon, Oxford, 1982).
  23. R. B. Bernstein, R. D. Levine, “Role of energy in Reactive Molecular Scattering: an Information-Theoretic Approach,” Adv. At. Mol. Phys. 11, 215 (1975) and references therein. [CrossRef]
  24. S. C. Farantos, J. N. Murrell, “Classical Dynamics of the O + ClO → Cl + O2 and Cl + O3 → ClO + O2 Reactions,” Int. J. Quantum Chem. 14, 659 (1978). [CrossRef]
  25. S. C. Farantos, J. N. Murrell, “A Classical Trajectory Study of the Reaction H + HCO → H2 + CO,” Mol. Phys. 40, 883 (1980). [CrossRef]
  26. S. A. Clough, F. X. Kniezys, E. P. Shettle, G. P. Anderson, “Atmospheric Radiance and Transmittance: fascod2,” Preprint in Proceedings, Sixth Conference of Atmospheric Radiation (American Meteorological Society, Williamsburg, VA, May 1986).
  27. J. B. Kumer, J. F. Potter, J. L. Mergenthaler, “The Utilization of fascode to Calculate Vertical Flux and Flux Derivatives in a Plane Parallel Planetary Atmosphere: Application to Calculate Radiative Excitation of NO(υ = 1) in the Stratosphere,” Letter to be submitted to Appl. Opt. (1987). [PubMed]
  28. V. G. Kunde et al., “Infrared Spectroscopy of the Lower Stratosphere with a Balloon-Borne Cryogenic Fourier Spectrometer,” Appl. Opt. 26, 545 (1987). [CrossRef] [PubMed]
  29. B. F. Gordiets, M. N. Markov, L. A. Shelepin, “IR Radiation of the Upper Atmosphere,” Planet. Space Sci. 26, 933 (1978). [CrossRef]
  30. T. Arikawa, K. Kanazawa, Y. Takubo, “Multiphoton Ionization of Nitric Oxide from Photodissociation of Nitrogen Dioxide,” Shitsuryo Bunseki 33, 131 (1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited