Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Degradation of signal to noise ratio in optical free space data links due to background illumination

Not Accessible

Your library or personal account may give you access

Abstract

In free space optical data transmission systems illumination of the receiver antenna by background radiation will decrease the signal to noise ratio. We derive expressions for that degradation both for direct and for heterodyne/homodyne receivers. Examples are given for cases where the sun, the moon, the earth, and Venus illuminate earth orbiting receivers operating at wavelengths of 0.85 μm, 1.3 μm, and 10.6 μm. Direct detection receivers will typically suffer a degradation of between 5 and 15 dB at λ = 0.85 μm and λ = 1.3 μm when illuminated by the sun. Heterodyne/homodyne receivers at 10.6 μm degrade more with sun radiation (typically 4 dB) than at the smaller wavelengths (≈0.3 dB). The moon, earth, and Venus cause negligible reduction of signal to noise ratio.

© 1989 Optical Society of America

Full Article  |  PDF Article
More Like This
Phase-only filters with improved signal to noise ratio

B. V. K. Vijaya Kumar and Zouhir Bahri
Appl. Opt. 28(2) 250-257 (1989)

Analysis of hexagonal array geometry for free-space optical interconnects with improved signal-to-noise ratio

Feng-Chuan F. Tsai, Christopher J. O'Brien, Novak S. Petrović, and Aleksandar D. Rakić
Appl. Opt. 46(13) 2434-2442 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.