Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Internal absorption cross sections in a stratified sphere

Not Accessible

Your library or personal account may give you access

Abstract

Series expressions for the radially dependent absorption cross section and angle-averaged absorption heat source function within a stratified sphere are presented. A numerically stable and accurate algorithm for computation of the internal radiative properties, as well as the overall scattering and extinction of a stratified sphere having an arbitrary number of layers is developed. The results allow for direct estimation of the degree of penetration and intensity of radiative heating in radially inhomogeneous spherical particles, and also provide an estimate of the thermal emission coefficient of particles having a radial temperature distribution.

© 1990 Optical Society of America

Full Article  |  PDF Article
More Like This
Calculation of total cross sections of multiple-sphere clusters

Daniel W. Mackowski
J. Opt. Soc. Am. A 11(11) 2851-2861 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (72)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.