OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 33 — Nov. 20, 1992
  • pp: 6979–6982

Cavity dispersion equation Δλ ≈ Δθ(∂θ/∂λ)−1: a note on its origin

F. J. Duarte  »View Author Affiliations


Applied Optics, Vol. 31, Issue 33, pp. 6979-6982 (1992)
http://dx.doi.org/10.1364/AO.31.006979


View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple derivation of the cavity dispersion equation for high-gain pulsed lasers, Δλ ≈ Δθ(∂θ/∂λ)−1, is provided by using Dirac’s notation for probability amplitudes as applied to the analysis of dispersive cavities.

© 1992 Optical Society of America

History
Original Manuscript: May 22, 1992
Published: November 20, 1992

Citation
F. J. Duarte, "Cavity dispersion equation Δλ ≈ Δθ(∂θ/∂λ)−1: a note on its origin," Appl. Opt. 31, 6979-6982 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-33-6979


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. C. Strome, J. P. Webb, “Flashtube-pumped dye laser with multiple-prism tuning,” Appl. Opt. 10, 1348–1353 (1971). [CrossRef] [PubMed]
  2. T. W. Hänsch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy,” Appl. Opt. 11, 895–898 (1972). [CrossRef] [PubMed]
  3. D. C. Hanna, P. A. Karkkainen, R. Wyatt, “A simple beam expander for frequency narrowing of dye lasers,” Opt. Quantum Electron. 7, 115–119 (1975). [CrossRef]
  4. F. P. Schäfer, “Principles of dye laser operation,” in Dye Lasers, F. P. Schäfer, ed. (Springer-Verlag, Berlin, 1990), pp. 1–89.
  5. F. J. Duarte, “Narrow-linewidth pulsed dye laser oscillators,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 133–183.
  6. A. F. Bernhardt, P. Rasmussen, “Design criteria and operating characteristics of a single-mode pulsed dye laser,” Appl. Phys. B 26, 141–146 (1981). [CrossRef]
  7. F. J. Duarte, J. A. Piper, “Narrow linewidth high prf copper laser-pumped dye-laser oscillators,” Appl. Opt. 23, 1391–1394 (1984). [CrossRef] [PubMed]
  8. F. J. Duarte, “Multiple-prism Littrow and grazing-incidence pulsed CO2 lasers,” Appl. Opt. 24, 1244–1245 (1985). [CrossRef] [PubMed]
  9. J. K. Robertson, Introduction to Optics: Geometrical and Physical (Van Nostrand, New York, 1955).
  10. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975).
  11. J. Meaburn, Detection and Spectrometry of Faint Light (Reidel, Boston, Mass., 1976).
  12. R. Kingslake, Optical System Design (Academic, New York, 1983).
  13. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed. (Oxford, London, 1978).
  14. R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, Mass., 1971), Vol. 3; R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
  15. This probability approaches unity for the special case of Δθ ≈ ΔθD so that the constant is κ1 ≈ λ/(πw) and for all other cases |〈ϕ1,m|s〉|2 < 1.
  16. P. N. Everett, “Flashlamp-excited dye lasers,” in High Power Dye Lasers, F. J. Duarte, ed. (Springer-Verlag, Berlin, 1991), pp. 183–245.
  17. Similar arguments to those used to estimate κ1 can be applied to approximate κ2 and κ3.
  18. F. J. Duarte, “Dispersive dye lasers,” in High Power Dye Lasers, F. J. Duarte, ed. (Springer-Verlag, Berlin, 1991), pp. 7–43.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited